Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochem Biophys Res Commun ; 520(3): 520-525, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31610913

ABSTRACT

Membrane proteins are targeted to the surface transmembrane after folding and assembling in the endoplasmic reticulum (ER). Misfolded- and unassembled-proteins are degraded by proteasomes following ubiquitination, termed ER-associated degradation (ERAD). Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive channel. One of the TRPM2 splicing variants, short TRPM2 (TRPM2-S) having only the N-terminus and first two transmembrane domains, was reported to prevent full-length TRPM2 (TRPM2-L) activation. Although TRPM2-S interacts with TRPM2-L, the inhibitory mechanisms of TRPM2-S are unclear. We found that TRPM2-S prevents transmembrane expression of TRPM2-L by targeting ERAD. TRPM2-S expression was lower than that of TRPM2-L, and was increased by an ERAD inhibitor. TRPM2-S was not expressed at the transmembrane. This suggests that TRPM2-S is a substrate for ERAD. Upon the simultaneous expression of TRPM2-S, the transmembrane expression of TRPM2-L was attenuated and the poly-ubiquitination of TRPM2-L was facilitated. Our study may clarify why TRPM2-S inhibits oxidative stress-induced TRPM2-L activation.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , TRPM Cation Channels/chemistry , TRPM Cation Channels/metabolism , Cell Membrane/metabolism , HEK293 Cells , Humans , Oxidative Stress , Protein Folding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , TRPM Cation Channels/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...