Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 221, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259021

ABSTRACT

BACKGROUND: As genome sequencing becomes better integrated into scientific research, government policy, and personalized medicine, the primary challenge for researchers is shifting from generating raw data to analyzing these vast datasets. Although much work has been done to reduce compute times using various configurations of traditional CPU computing infrastructures, Graphics Processing Units (GPUs) offer opportunities to accelerate genomic workflows by orders of magnitude. Here we benchmark one GPU-accelerated software suite called NVIDIA Parabricks on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA DGX cluster. We benchmarked six variant calling pipelines, including two germline callers (HaplotypeCaller and DeepVariant) and four somatic callers (Mutect2, Muse, LoFreq, SomaticSniper). RESULTS: We achieved up to 65 × acceleration with germline variant callers, bringing HaplotypeCaller runtimes down from 36 h to 33 min on AWS, 35 min on GCP, and 24 min on the NVIDIA DGX. Somatic callers exhibited more variation between the number of GPUs and computing platforms. On cloud platforms, GPU-accelerated germline callers resulted in cost savings compared with CPU runs, whereas some somatic callers were more expensive than CPU runs because their GPU acceleration was not sufficient to overcome the increased GPU cost. CONCLUSIONS: Germline variant callers scaled well with the number of GPUs across platforms, whereas somatic variant callers exhibited more variation in the number of GPUs with the fastest runtimes, suggesting that, at least with the version of Parabricks used here, these workflows are less GPU optimized and require benchmarking on the platform of choice before being deployed at production scales. Our study demonstrates that GPUs can be used to greatly accelerate genomic workflows, thus bringing closer to grasp urgent societal advances in the areas of biosurveillance and personalized medicine.


Subject(s)
Computer Graphics , Software , Workflow , Genomics
2.
Cancer Biomark ; 33(2): 173-184, 2022.
Article in English | MEDLINE | ID: mdl-35213360

ABSTRACT

BACKGROUND: Artificial intelligence (AI), including machine learning (ML) and deep learning, has the potential to revolutionize biomedical research. Defined as the ability to "mimic" human intelligence by machines executing trained algorithms, AI methods are deployed for biomarker discovery. OBJECTIVE: We detail the advancements and challenges in the use of AI for biomarker discovery in ovarian and pancreatic cancer. We also provide an overview of associated regulatory and ethical considerations. METHODS: We conducted a literature review using PubMed and Google Scholar to survey the published findings on the use of AI in ovarian cancer, pancreatic cancer, and cancer biomarkers. RESULTS: Most AI models associated with ovarian and pancreatic cancer have yet to be applied in clinical settings, and imaging data in many studies are not publicly available. Low disease prevalence and asymptomatic disease limits data availability required for AI models. The FDA has yet to qualify imaging biomarkers as effective diagnostic tools for these cancers. CONCLUSIONS: Challenges associated with data availability, quality, bias, as well as AI transparency and explainability, will likely persist. Explainable and trustworthy AI efforts will need to continue so that the research community can better understand and construct effective models for biomarker discovery in rare cancers.


Subject(s)
Artificial Intelligence , Biomarkers, Tumor , Ovarian Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Artificial Intelligence/standards , Artificial Intelligence/trends , Bias , Early Detection of Cancer , Female , Humans , Machine Learning , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...