Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 534: 215613, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35276290

ABSTRACT

Signal transducer and activator of transcription (Stat)3 is a valid anticancer therapeutic target. We have discovered a highly potent chemotype that amplifies the Stat3-inhibitory activity of lead compounds to levels previously unseen. The azetidine-based compounds, including H172 (9f) and H182, irreversibly bind to Stat3 and selectively inhibit Stat3 activity (IC50 0.38-0.98 µM) over Stat1 or Stat5 (IC50 > 15.8 µM) in vitro. Mass spectrometry detected the Stat3 cysteine peptides covalently bound to the azetidine compounds, and the key residues, Cys426 and Cys468, essential for the high potency inhibition, were confirmed by site-directed mutagenesis. In triple-negative breast cancer (TNBC) models, treatment with the azetidine compounds inhibited constitutive and ligand-induced Stat3 signaling, and induced loss of viable cells and tumor cell death, compared to no effect on the induction of Janus kinase (JAK)2, Src, epidermal growth factor receptor (EGFR), and other proteins, or weak effects on cells that do not harbor aberrantly-active Stat3. H120 (8e) and H182 as a single agent inhibited growth of TNBC xenografts, and H278 (hydrochloric acid salt of H182) in combination with radiation completely blocked mouse TNBC growth and improved survival in syngeneic models. We identify potent azetidine-based, selective, irreversible Stat3 inhibitors that inhibit TNBC growth in vivo.


Subject(s)
Azetidines , Triple Negative Breast Neoplasms , Animals , Apoptosis , Azetidines/pharmacology , Cell Line, Tumor , Humans , Mice , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
2.
J Med Chem ; 64(1): 695-710, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33352047

ABSTRACT

We optimized our previously reported proline-based STAT3 inhibitors into an exciting new series of (R)-azetidine-2-carboxamide analogues that have sub-micromolar potencies. 5a, 5o, and 8i have STAT3-inhibitory potencies (IC50) of 0.55, 0.38, and 0.34 µM, respectively, compared to potencies greater than 18 µM against STAT1 or STAT5 activity. Further modifications derived analogues, including 7e, 7f, 7g, and 9k, that addressed cell membrane permeability and other physicochemical issues. Isothermal titration calorimetry analysis confirmed high-affinity binding to STAT3, with KD of 880 nM (7g) and 960 nM (9k). 7g and 9k inhibited constitutive STAT3 phosphorylation and DNA-binding activity in human breast cancer, MDA-MB-231 or MDA-MB-468 cells. Furthermore, treatment of breast cancer cells with 7e, 7f, 7g, or 9k inhibited viable cells, with an EC50 of 0.9-1.9 µM, cell growth, and colony survival, and induced apoptosis while having relatively weaker effects on normal breast epithelial, MCF-10A or breast cancer, MCF-7 cells that do not harbor constitutively active STAT3.


Subject(s)
Azetidines/chemistry , STAT3 Transcription Factor/antagonists & inhibitors , Amides/chemistry , Apoptosis/drug effects , Azetidines/metabolism , Azetidines/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , DNA/chemistry , DNA/metabolism , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Phosphorylation/drug effects , Protein Binding , STAT3 Transcription Factor/metabolism , Structure-Activity Relationship
3.
Nucleic Acids Res ; 47(21): 11020-11043, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31617560

ABSTRACT

RNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base. Our recombinant penton base chimera contains polypeptide domains designed for noncovalent assembly with anionic molecules and tumor homing. Here, structural modeling, molecular dynamics simulations, and functional assays suggest that it forms pentameric units resembling viral capsomeres that assemble into larger capsid-like structures when combined with siRNA cargo. Pentamerization forms a barrel lined with charged residues mediating pH-responsive dissociation and exposing masked domains, providing insight on the endosomolytic mechanism. The therapeutic impact was examined on tumors expressing high levels of HER3/ErbB3 that are resistant to clinical inhibitors. Our findings suggest that our construct may utilize ligand mimicry to avoid host attack and target the siRNA to HER3+ tumors by forming multivalent capsid-like structures.


Subject(s)
Drug Carriers/therapeutic use , Nanoparticles/therapeutic use , RNA, Small Interfering/pharmacology , Receptor, ErbB-3/antagonists & inhibitors , Recombinant Proteins/therapeutic use , Animals , Capsid Proteins/chemistry , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Neuregulin-1/chemistry , RNA Interference
4.
ChemMedChem ; 14(8): 798-809, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30821046

ABSTRACT

Rational structure-based drug design relies on a detailed, atomic-level understanding of protein-ligand interactions. The chiral nature of drug binding sites in proteins has led to the discovery of predominantly chiral drugs. A mechanistic understanding of stereoselectivity (which governs how one stereoisomer of a drug might bind stronger than the others to a protein) depends on the topology of stereocenters in the chiral molecule. Chiral graphs and reduced chiral graphs, introduced here, are new topological representations of chiral ligands using graph theory, to facilitate a detailed understanding of chiral recognition of ligands/drugs by proteins. These representations are demonstrated by application to all ≈14 000+ chiral ligands in the Protein Data Bank (PDB), which will facilitate an understanding of protein-ligand stereoselectivity mechanisms. Ligand modifications during drug development can be easily incorporated into these chiral graphs. In addition, these chiral graphs present an efficient tool for a deep dive into the enormous chemical structure space to enable sampling of unexplored structural scaffolds.


Subject(s)
Drug Design , Ligands , Proteins/chemistry , Databases, Protein , Protein Binding , Protein Structure, Tertiary , Proteins/metabolism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...