Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(4): 2833-46, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25622309

ABSTRACT

The synthesis, linear photophysical characterization, and nonlinear optical properties of two new symmetrical fluorene-containing quinolizinium derivatives, 2,8-bis((E)-2-(7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)vinyl)quinolizinium hexafluorophosphate (1) and 2,8-bis((E)-2-(7-((7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)ethynyl)-9,9-dihexyl-9H-fluoren-2yl)vinyl)quinolizinium hexafluorophosphate (2), are reported. The nature of the dual-band steady-state fluorescence emission of 1 and 2 was determined, and violation of Kasha's rule along with a strong dependence on solvent polarity were shown. A relatively complex structure of two-photon absorption (2PA) spectra of 1 and 2, with maximum cross sections of ∼400-600 GM, was determined using the open aperture Z-scan method. Different types of fast relaxation processes with characteristic times of 0.3-0.5 ps and 1.5-2 ps were observed in the excited states of the new compounds via femtosecond transient absorption pump-probe spectroscopy. To better understand the photophysical behavior of 1 and 2, a quantum-mechanical study was undertaken using TD-DFT and ZINDO/S methods. Simulated linear absorption spectra were found to be in good agreement with experimental data, while 2PA cross sections were overestimated. Although the new dyes were highly fluorescent in nonpolar solvents, they were essentially nonfluorescent in polar media. Significantly, the quinolizinium dyes exhibited fluorescence turn-on behavior upon binding to bovine serum album (BSA) protein, exhibiting over 4-fold fluorescence enhancement, which was a finding that was leveraged to demonstrate cell membrane fluorescence imaging of HeLa cells.


Subject(s)
Cell Membrane/chemistry , Fluorenes/chemistry , Fluorescent Dyes/chemistry , Quinolizines/chemistry , Cations/chemistry , Cells/chemistry , Fluorescence , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Spectrometry, Fluorescence
2.
Chemphyschem ; 14(15): 3532-42, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24022985

ABSTRACT

The synthesis, linear photophysical, two-photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative (1) are reported. Steady-state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10(-6)-10(-8)) were observed. An open-aperture Z-scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited-state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.


Subject(s)
Aminophenols/chemistry , Cyclobutanes/chemistry , Phenols/chemistry , Photons , Absorption , Aminophenols/chemical synthesis , Cyclobutanes/chemical synthesis , Fluorescent Dyes/chemistry , Hydrogen Bonding , Light , Quantum Theory , Spectrometry, Fluorescence
3.
ACS Appl Mater Interfaces ; 3(9): 3559-67, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21830820

ABSTRACT

Efficient reversible phototransformation of a new diarylethene-fluorene derivative, 1,2-bis(5-(9,9-didecyl-7-nitro-9H-fluoren-2-yl)-2-methylthiophen-3-yl)cyclopent-1-ene (1), was demonstrated in organic media under low-intensity laser excitation. Linear photophysical characterization of 1 was performed at room temperature in solvents of different polarity and viscosity. Significantly, close to unity quantum yield for the cyclization reaction of 1 was shown in nonpolar solutions. The lifetimes of the excited states of the open (OF) and closed (CF) forms of 1 were measured by a femtosecond transient absorption technique, and corresponding values of ∼0.7 and ∼0.9 ps were shown in dichloromethane (DCM), respectively. Degenerate two-photon absorption (2PA) spectra of the OF and CF of 1 were obtained over a broad spectral range by the open aperture Z-scan method under 1 kHz femtosecond excitation. The values of 2PA cross sections of the OF in DCM (∼50-70 GM) were found to increase up to 1 order of magnitude (∼600 GM) after cyclization to the CF. The nature of cyclization and cylcoreversion processes were investigated by quantum chemistry with employment of DFT-based methods implemented in the Gaussian'09 program. The potential of 1 for application in optical data storage was shown using poly(methyl methacrylate)-doped films and two-photon fluorescence microscopy readout.


Subject(s)
Fluorenes/chemistry , Absorption , Cyclization , Fluorenes/chemical synthesis , Isomerism , Light , Microscopy, Fluorescence , Photons , Polymethyl Methacrylate/chemistry , Quantum Theory , Solvents/chemistry , Temperature , Ultraviolet Rays
4.
J Phys Chem B ; 114(28): 9313-21, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20590077

ABSTRACT

The photophysical, photochemical, two-photon absorption (2PA) and metal ion sensing properties of a new fluorene derivative (E)-1-(7-(4-(benzo[d]thiazol-2-yl)styryl)-9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluoren-2-yl)-3-(2-(9,10,16,17,18,19,21,22,23,24-decahydro-6H dibenzo[h,s][1,4,7,11,14,17]trioxatriazacycloicosin-20(7H)-yl)ethyl)thiourea (1) were investigated in organic and aqueous media. High sensitivity and selectivity of 1 to Zn(2+) in tetrahydrofuran and a water/acetonitrile mixture were shown by both absorption and fluorescence titration. The observed complexation processes corresponded to 1:1 stoichiometry with the range of binding constants approximately (2-3) x 10(5) M(-1). The degenerate 2PA spectra of 1 and 1/Zn(2+) complex were obtained in the 640-900 nm spectral range with the maximum values of two-photon action cross section for ligand/metal complex approximately (90-130) GM, using a standard two-photon induced fluorescence methodology under femtosecond excitation. The nature of the 2PA bands was analyzed by quantum chemical methods and a specific dependence on metal ion binding processes was shown. Ratiometric fluorescence detection (420/650 nm) provided a good dynamic range (10(-4) to 10(-6) M) for detecting Zn(2+), which along with the good photostability and 2PA properties of probe 1 makes it a good candidate in two-photon fluorescence microscopy imaging and sensing of Zn ions.


Subject(s)
Fluorenes/chemistry , Photons , Zinc/chemistry , Absorption , Quantum Theory , Spectrometry, Fluorescence
5.
J Mol Model ; 16(6): 1093-101, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19924452

ABSTRACT

We report density functional theory (DFT) calculations of the Raman spectra for hexapeptides of glutamic acid and lysine in three different conformations (alpha, beta and PPII). The wave numbers of amide I, amide II and amide III bands of all three conformations predicted at B3LYP/6-31G and B3LYP/6-31G* are in good agreement with previously reported experimental values of polyglutamic acid and polylysine. Agreement with experiment improves when polarization functions are included in the basis set. Explicit water molecules, H-bonded to the backbone amide groups were found to be absolutely necessary to obtain this agreement. Our results indicate that DFT is a promising tool for assignment of the spectral data on kinetics of conformational changes for peptides during amyloid formation.


Subject(s)
Amyloid/chemistry , Protein Conformation , Spectrum Analysis, Raman/methods , Glutamic Acid/chemistry , Hydrogen Bonding , Lysine/chemistry , Models, Molecular , Molecular Structure , Oligopeptides/chemistry , Peptides/chemistry , Protein Structure, Secondary , Water/chemistry
6.
J Phys Chem A ; 113(25): 7080-9, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19480402

ABSTRACT

Conjugated organic molecules with photochromic properties are being extensively studied as prospective optical switching and data storage materials. Among different photochromic compounds, diarylethenes demonstrate thermal stability, fatigue resistance, and high quantum yield. The mechanism of photoswitching in diarylethenes involves a symmetry-allowed conrotatory electrocyclic reaction, initiated by UV light. Replacement of one UV photon with two near-IR ones would offer a number of practical advantages, including drastic increase in storage capacity via three-dimensional multilayer design. For this purpose we designed a prototype molecule with a two-photon absorbing (2PA) pendant substituent, attached to the photochromic diarylethene moiety. However, this molecule was experimentally shown to have lost the photoswitching properties. We analyze reasons for this loss using quantum chemistry tools. Analysis of the nodal structure of the frontier Kohn-Sham orbitals, allowed us to trace the route of the problem to the lone pair orbital of the 2PA substituent falling within the HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of the photoreactive diarylethene moiety. We suggest a chemical modification of the 2PA substituent in order to restore the order of the orbitals. Potential energy plots along the reaction coordinate at the M05-2X/6-31G* theory level for the prototype 2PA photochromic molecule before and after the modification confirm the predictive capability of the proposed orbital approach. The Slater transition state method was used to obtain geometries along the reaction pathway by the constrained optimization of excited states, whereas potential energy curves were plotted using the recently proposed (Mikhailov, I. A.; Tafur, S.; Masunov, A. E. Phys. Rev. A 2008, 77 (1), 012510) a posteriori Tamm-Dancoff approximation to the time-dependent density functional theory in second order of the external field. We show that this combination is able to produce accurate potential surfaces for 1B and 2A excited states, as compared to available experimental data and results of high-level multireference wave function theory methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...