Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(13): e33801, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027545

ABSTRACT

Co-precipitation of biopolymers into calcium carbonate crystals changes their physicochemical and biological properties. This work studies hybrid microcrystals of vaterite obtained in the presence of natural polysaccharides, as carriers for the delivery of proteins and enzymes. Hybrid microcrystals with dextran sulfate, chondroitin sulfate, heparin, fucoidan, and pectin were obtained and compared. The impact of polysaccharides on the morphology (particle diameter, surface area, nanocrystallite and pore size), polysaccharide content and surface charge of hybrid microcrystals was studied. Only microcrystals with fucoidan and heparin exhibited antioxidant activity against •ОН radical. The surface charge and pore size of the hybrid microcrystals affected the sorption of albumin, catalase, chymotrypsin, mucin. A decrease in the catalytic constant and Michaelis constant was observed for catalase sorbed on the hybrid crystals. The biocompatibility of microcrystals depended on the nature of the included polysaccharide: crystals with sulfated polysaccharides increased blood plasma coagulation but not platelet aggregation, and crystals with dextran sulfate had the greatest cytotoxicity against HT-29 cells but not erythrocytes. Hybrid microcrystals with all polysaccharides except chondroitin sulfate reduced erythrocyte lysis in vitro compared with vaterite crystals. The obtained results enable to create novel carriers based on hybrid vaterite crystals with polysaccharides, beneficial for the delivery of protein drugs.

2.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958911

ABSTRACT

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.


Subject(s)
Calcium Carbonate , Pectins , Pectins/pharmacology , Pectins/metabolism , Calcium Carbonate/pharmacology , Luminol/metabolism , Mucins/metabolism , Neutrophil Activation , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Neutrophils/metabolism
3.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555108

ABSTRACT

Implantation of scaffolds causes a local inflammatory response whereby the early recruitment of neutrophils is of great importance not only for fighting the infection, but also for facilitating effective regeneration. We used luminol-dependent chemiluminescence, flow cytometry, ELISA, and confocal microscopy to assess the responses of neutrophils after the exposure to the scaffold-decellularized bovine pericardium (collagen type I) crosslinked with genipin (DBPG). We demonstrated that DBPG activated neutrophils in whole blood causing respiratory burst, myeloperoxidase (MPO) secretion, and formation of neutrophil extracellular trap-like structures (NETs). In addition, we studied platelets, another important player of the immediate immune host response. We found that platelets triggered redox-activation of isolated neutrophils by the pericardium scaffold, and likely participate in the NETs formation. Free radicals generated by neutrophils and hypochlorous acid produced by MPO are potent oxidizing agents which can oxidatively degrade biological structures. Understanding the mechanisms and consequences of redox activation of neutrophils by pericardium scaffolds is important for the development of new approaches to increase the efficiency of tissue regeneration.


Subject(s)
Extracellular Traps , Neutrophils , Cattle , Animals , Neutrophils/metabolism , Extracellular Traps/metabolism , Peroxidase/metabolism , Oxidation-Reduction , Respiratory Burst , Blood Platelets/metabolism
4.
Antioxidants (Basel) ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36421449

ABSTRACT

Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.

5.
Molecules ; 27(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144584

ABSTRACT

Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma. Eight CAMPs were included in the study. Hemolysis and lactate dehydrogenase assays showed that the potency to disrupt erythrocyte, neutrophil and mononuclear cell membranes descended in the order pept_1 > pept_3 ~ pept_5 > pept_2 ~ pept_4. Pept_3 caused both cell lysis and aggregation. Blood plasma and albumin inhibited the CAMP-induced hemolysis. The chemiluminescence method allowed the detection of pept_3-mediated neutrophil activation. In plasma coagulation assays, pept_3 prolonged the activated partial thromboplastin time (APTT) and prothrombin time (at 50 µM by 75% and 320%, respectively). Pept_3 was also capable of causing fibrinogen aggregation. Pept_6 prolonged APTT (at 50 µM by 115%). Pept_2 was found to combine higher bactericidal activity with lower effects on cells and coagulation. Our data emphasize the necessity of investigating CAMP interaction with plasma.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Albumins , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Blood Cells , Fibrinogen , Hemolysis , Humans , Lactate Dehydrogenases , Organoplatinum Compounds , Plasma
6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142492

ABSTRACT

Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite-mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of -1 ± 1 mV and -7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL-1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1ß, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1-10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin-vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.


Subject(s)
Luminol , Neutrophils , Calcium/metabolism , Calcium Carbonate/pharmacology , Calcium Oxalate/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Ions/metabolism , Luminol/chemistry , Magnesium/metabolism , Mucins/metabolism , Neutrophils/metabolism , Oxidants/pharmacology , Phosphates/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zymosan/pharmacology
7.
Int J Mol Sci ; 23(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35887188

ABSTRACT

Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.


Subject(s)
Neutrophil Activation , Pyruvaldehyde , Calcium Carbonate , Glycation End Products, Advanced/metabolism , Humans , Hydrogen Peroxide , Minerals , NADP , NADPH Oxidases/metabolism , Pyruvaldehyde/pharmacology , Serum Albumin , Serum Albumin, Human/chemistry , Glycated Serum Albumin
8.
Macromol Biosci ; 22(7): e2200005, 2022 07.
Article in English | MEDLINE | ID: mdl-35489086

ABSTRACT

While the enteral delivery of proteolytic enzymes is widely established for combating many diseases as an alternative to antibiotic treatment, their local delivery only emerges as administration route enabling sustained release in a controlled manner on site. The latest requires the development of drug delivery systems suitable for encapsulation and preservation of enzymatic proteolytic activity. This study proposes hybrid microspheres made of mucin and biodegradable porous crystals of calcium carbonate (CC) as the carriers for chymotrypsin (CTR) delivery. CTR is impregnated into CC and hybrid CC/mucin (CCM) microspheres by means of sorption without any chemical modification. The loading of the CC with mucin enhances CTR retention on hybrid microspheres (adsorption capacity of ≈8.7 mg g-1  vs 4.7 mg g-1 ), recharging crystal surface due to the presence of mucin and diminishing the average pore diameter of the crystals from 25 to 8 nm. Mucin also retards recrystallization of vaterite into nonporous calcite improving stability of CCM microspheres upon storage. Proteolytic activity of CTR is preserved in both CC and CCM microspheres, being pH dependent. Temperature-induced inactivation of CTR significantly diminishes by CTR encapsulation into CC and CCM microspheres. Altogether, these findings indicate promises of hybrid mucin-vaterite microspheres for mucosal application of proteases.


Subject(s)
Calcium Carbonate , Chymotrypsin , Calcium Carbonate/chemistry , Microspheres , Mucins , Peptide Hydrolases , Proteins
9.
Plant Mol Biol ; 106(1-2): 123-143, 2021 May.
Article in English | MEDLINE | ID: mdl-33713297

ABSTRACT

Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.


Subject(s)
Bryopsida/immunology , Bryopsida/metabolism , Peptides/metabolism , Plant Immunity , Signal Transduction , Amino Acid Sequence , Bryopsida/drug effects , Bryopsida/genetics , Chitosan/pharmacology , Genome, Plant , Peptides/chemistry , Plant Immunity/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
BMC Surg ; 20(1): 116, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460827

ABSTRACT

BACKGROUND: Monopolar energy (ME) is routinely used in appendectomy. This study aimed to investigate the degree of lateral thermal spread generated by ME and to evaluate the thermal injury sustained by the close-lying tissues. METHODS: Appendectomy with a monopolar Maryland dissector was performed in 8 rabbits (at 30 and 60 W power settings). A high-resolution infrared camera was used to record tissue heating during the intervention. After autopsy macroscopic changes were evaluated and tissue samples were subjected to myeloperoxidase (MPO) assay and histological examination. RESULTS: No significant differences in the extent of thermal spread, MPO activity and histological signs of inflammation were observed between groups. Regardless of the power settings, the heat spread exceeded 2 cm laterally along the mesoappendix when application time exceeded 3 s. The spread of heat through tubular structures in both groups caused a significant temperature rise in the nearby intestinal loop, resulting in perforation (n = 3) and necrosis (n = 1). CONCLUSIONS: Application time is critical in thermal spread during appendectomy aided by ME. Tubular anatomic structures can enhance thermal injury on distant tissues. The observed effects of ME bear clinical relevance that need further investigation.


Subject(s)
Appendectomy/methods , Electrosurgery/methods , Animals , Appendix/surgery , Dissection , Hot Temperature , Male , Rabbits , Thermography
11.
FEBS Open Bio ; 10(3): 414-426, 2020 03.
Article in English | MEDLINE | ID: mdl-31961067

ABSTRACT

Successful colonization of the intestine requires that bacteria interact with the innate immune system and, in particular, neutrophils. Progression of inflammatory bowel diseases (IBD) is associated with alterations in gut microbiota, and dysbiosis in Crohn's disease (CD) patients is often associated with an expansion of Escherichia coli. Here, we investigated the ability of such E. coli isolates to avoid neutrophil activation and to utilize reactive oxygen species. Neutrophil activation was detected in vitro in normal human blood via luminol chemiluminescence (CL) induced by reactive oxygen and halogen species generated by neutrophils. No significant difference in neutrophil activation in vitro was detected between isolates from inflamed (23 isolates) vs healthy intestines (5 isolates), with 10-fold variation within both groups (2.9-61.2 mV). CL activity of isolates from the same patient differed by 1.5-5 times. Twenty-four isolates from ileal aspirate, biopsy, and feces of seven patients with CD and one patient with no intestine inflammation were tested for extracellular peroxidase and catalase activity and cell surface hydrophobicity. Average values between patients varied from 26 ± 3 to 73 ± 18 µmol·g-1 of air dry weight for peroxidase activity, from 15 ± 2 to 189 ± 56 mmol·g-1 of air dry weight for catalase activity, and from 5 ± 3 to 105 ± 9 a.u. for the hydrophobic probe fluorescence. Extracellular peroxidase activity and hydrophobicity of bacterial cell surface correlated negatively with stimulated neutrophil CL. The ability of some isolates to avoid neutrophil activation and to utilize reactive oxygen species may provide a strategy to survive assault by the innate immune system.


Subject(s)
Catalase/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/immunology , Neutrophil Activation/immunology , Adult , Catalase/physiology , Crohn Disease/metabolism , Crohn Disease/pathology , Dysbiosis/metabolism , Dysbiosis/pathology , Escherichia coli/pathogenicity , Escherichia coli Proteins/physiology , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiology , Intestines/pathology , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/pathology , Reactive Oxygen Species/metabolism
12.
Mater Sci Eng C Mater Biol Appl ; 108: 110382, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924010

ABSTRACT

Venous thromboembolism is a frequent complication occurring in patients suffering from neoplastic diseases. Since neutrophil extracellular traps (NETs) play an important role both in the development of the tumor growth process and in inducing complications such as thrombosis, indubitably the investigation of the effect of antitumor drugs on the formation of neutrophil extracellular traps and on the ability of such drugs to prevent NETs contribution on carcinogenesis is of great interest. In the present work we studied the effect of 5-fluorouracil (5FU) and its shielded -by amphiphilic poly-N-vinylpyrrolidone (Amph-PVP) nanoparticles-nanoscaled polymeric form on the activation of human neutrophils under ex vivo conditions. Free 5FU at concentrations varying from 0.01 to 10 mg/ml was found to cause a significant (two to three times) and rapid (after 20 min) increase in the total amount of NETs in the blood. Importantly, when 5FU-loaded Amph-PVP nanoparticles were studied under the same conditions, the appearance of NETs in the blood was completely blocked providing strong evidence of their potential as delivery system for 5FU in antitumor therapy.


Subject(s)
Extracellular Traps/metabolism , Fluorouracil/pharmacology , Nanoparticles/chemistry , Polymers/chemistry , Extracellular Traps/drug effects , Humans , Luminescent Measurements , Neutrophils/drug effects , Neutrophils/metabolism , Povidone/chemistry , Surface-Active Agents/chemistry
13.
FEBS Open Bio ; 10(2): 180-196, 2020 02.
Article in English | MEDLINE | ID: mdl-31785127

ABSTRACT

Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D-PAGE, fluorescent mucin binding on a blot and HPLC-MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu-1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.


Subject(s)
Mucins/metabolism , Neutrophil Activation/physiology , Neutrophils/metabolism , Adsorption , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Humans , Porins , Tandem Mass Spectrometry
14.
J Colloid Interface Sci ; 545: 330-339, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30901672

ABSTRACT

Porous vaterite CaCO3 crystals are widely used as containers for drug loading and as sacrificial templates to assemble polymer-based nano- and micro-particles at mild conditions. Special attention is paid nowadays to mucosal delivery where the glycoprotein mucin plays a crucial role as a main component of a mucous. In this work mucoadhesive properties of vaterite crystals have been tested by investigation of mucin binding to the crystals as a function of (i) time, (ii) glycoprotein concentration, (iii) adsorption conditions and (iv) degree of mucin desialization. Mucin adsorption follows Bangham equation indicating that diffusion into crystal pores is the rate-limiting step. Mucin strongly binds to the crystals (ΔG = -35 ±â€¯4 kJ mol-1) via electrostatic and hydrophobic interactions forming a gel and thus giving the tremendous mucin mass content in the crystals of up to 16%. Despite strong intermolecular mucin-mucin interactions, pure mucin spheres formed after crystal dissolution are unstable. However, introduction of protamine, actively used for mucosal delivery, makes the spheres stable via additional electrostatic bonding. The results of this work indicate that the vaterite crystals are extremely promising carriers for mucosal drug delivery and for development of test-systems for the analysis of the mucoadhesion.

15.
Micromachines (Basel) ; 9(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-30424240

ABSTRACT

Porous vaterite crystals of CaCO3 are extensively used for the fabrication of self-assembled polymer-based microparticles (capsules, beads, etc.) utilized for drug delivery and controlled release. The nature of the polymer used plays a crucial role and discovery of new perspective biopolymers is essential to assemble microparticles with desired characteristics, such as biocompatibility, drug loading efficiency/capacity, release rate, and stability. Glycoprotein mucin is tested here as a good candidate to assemble the microparticles because of high charge due to sialic acids, mucoadhesive properties, and a tendency to self-assemble, forming gels. Mucin loading into the crystals via co-synthesis is twice as effective as via adsorption into preformed crystals. Desialylated mucin has weaker binding to the crystals most probably due to electrostatic interactions between sialic acids and calcium ions on the crystal surface. Improved loading of low-molecular-weight inhibitor aprotinin into the mucin-containing crystals is demonstrated. Multilayer capsules (mucin/protamine)3 have been made by the layer-by-layer self-assembly. Interestingly, the deposition of single mucin layers (mucin/water)3 has also been proven, however, the capsules were unstable, most probably due to additional (to hydrogen bonding) electrostatic interactions in the case of the two polymers used. Finally, approaches to load biologically-active compounds (BACs) into the mucin-containing microparticles are discussed.

16.
Bioelectromagnetics ; 39(2): 144-155, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29194676

ABSTRACT

The growing use of extremely high-frequency electromagnetic radiation (EHF EMR) in information and communication technology and in biomedical applications has raised concerns regarding the potential biological impact of millimeter waves (MMWs). Here, we elucidated the effects of MMW radiation on neutrophil activation induced by opsonized zymosan or E. coli in whole blood ex vivo. After agonist addition to blood, two samples were prepared. A control sample was incubated at ambient conditions without any treatment, and a test sample was exposed to EHF EMR (32.9-39.6 GHz, 100 W/m2 ). We used methods that allowed us to assess the functional status of neutrophils immediately after exposure: oxidant production levels were measured by luminol-dependent chemiluminescence, and morphofunctional changes to neutrophils were observed in blood smears. Results revealed that the response of neutrophils to both agonists was intensified if blood was exposed to MMW radiation for 15 min. Neutrophils were intact in both the control and irradiated samples if no agonist was added to blood before incubation. Similarly, exposing suspensions of isolated neutrophils in plasma to MMW radiation enhanced cell response to both zymosan and E. coli. Heating blood samples was shown to be the primary mechanism underlying enhanced EHF EMR-induced oxidant production by neutrophils in response to particulate agonists. Bioelectromagnetics. 39:144-155, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Electromagnetic Radiation , Neutrophils/radiation effects , Escherichia coli/physiology , Humans , Neutrophils/drug effects , Neutrophils/enzymology , Neutrophils/microbiology , Peroxidase/metabolism , Zymosan/pharmacology
17.
Nanomedicine ; 12(6): 1615-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27015767

ABSTRACT

Proteins adsorbed on a surface may affect the interaction of this surface with cells. Here, we studied the binding of human serum albumin (HSA), fibrinogen (FBG) and immunoglobulin G (IgG) to PEGylated single-walled carbon nanotubes (PEG-SWCNTs) and evaluated the impact of PEG-SWCNT treated by these proteins on neutrophils in whole blood samples. Measurements of adsorption parameters revealed tight binding of proteins to PEG-SWCNTs. AFM was employed to directly observe protein binding to sidewalls of PEG-SWCNTs. Fluorescein-labeled IgG was used to ascertain the stability of PEG-SWCNT-IgG complexes in plasma. In blood samples, all plasma proteins mitigated damage of neutrophils observed just after blood exposure to PEG-SWCNTs, while only treatment of PEG-SWCNTs with IgG resulted in dose- and time-dependent enhancement of CNT-induced neutrophil activation and in potentiation of oxidative stress. Our study demonstrates the ability of adsorbed plasma proteins to influence neutrophil response caused by PEG-SWCNTs in whole blood.


Subject(s)
Blood Proteins/physiology , Nanotubes, Carbon , Neutrophils/drug effects , Adsorption , Humans , Protein Binding
18.
Hum Antibodies ; 24(3-4): 39-44, 2016.
Article in English | MEDLINE | ID: mdl-28128763

ABSTRACT

INTRODUCTION: Intravenous immunoglobulin (IVIG) has been widely used to treat various conditions, including inflammatory and autoimmune diseases. IVIG has been shown to have a direct influence on neutrophils, eosinophils and lymphocytes. However, many aspects IVIG's effect on neutrophils activation still remain unknown. OBJECTIVE: To evaluate the effect of IVIG on PMA-induced activation of neutrophils, with and without priming with TNF-α, in a series of in vitro experiments performed on whole blood. RESULTS: Our data coincided with well-known literature indicating that the effect of phorbol 12-myristate 13-acetate (PMA) on human leukocytes includes activation of neutrophils, monocytes and eosinophils, increase of chemiluminescence (CL) and induction of netosis, resulting in assembly of traps. In presence of IVIG (10 mg/mL), CL was reduced by 25% in response to PMA compared to PMA-induced leukocyte activation without IVIG. Decreasing IVIG concentration to 1 mg/mL and below did not inhibit PMA-induced activation of CL.PMA-induced activation after TNF-α priming resulted in approximately 50% increase of amplitude of CL response to PMA. Moreover, maximum CL was reached by minute 5, which was more rapid than in the absence of TNF-α-priming (in this case maximum CL was reached by minute 15).The IVIG concentrations did not affect morphological changes of leukocytes after sequential addition of TNF-α and PMA. IVIG had no effect on leukocyte content and on PMA-induced CL of primed leukocytes.Addition of IVIG under TNF-α priming significantly increased the number of traps in the smears in response to PMA activation. Of note, such an increase in the number of traps was depended on the IVIG concentration in plasma. CONCLUSION: In conclusion, we suggest that IVIG is able to reduce the degradation of traps under priming with TNF-α. Moreover, IVIG might switch the activation of primed leukocytes to netosis.


Subject(s)
Immunoglobulins, Intravenous/pharmacology , Leukocytes/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Dose-Response Relationship, Immunologic , Extracellular Traps/drug effects , Extracellular Traps/immunology , Healthy Volunteers , Humans , Leukocytes/cytology , Leukocytes/immunology , Luminescent Measurements , Lymphocyte Activation/drug effects , Primary Cell Culture
19.
Free Radic Biol Med ; 68: 326-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24384524

ABSTRACT

Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the ß subunit of ß2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators.


Subject(s)
Inflammation/metabolism , NADPH Oxidases/metabolism , Oxidative Stress , Serum Albumin/metabolism , Humans , Hydrogen Peroxide/metabolism , Hypochlorous Acid/administration & dosage , Inflammation/pathology , NADPH Oxidases/chemistry , Neutrophil Activation/genetics , Neutrophils/cytology , Neutrophils/metabolism , Oxidants , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism
20.
Macromol Biosci ; 13(10): 1379-88, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23861285

ABSTRACT

Multicomponent insulin-containing microparticles are prepared by layer-by-layer assembly of dextran sulfate and chitosan on the core of protein-polyanion complex with or without protease inhibitors. Oral bioavailability of the encapsulated insulin is improved due to the cumulative effect of each component. A physico-chemical study shows that the particle design allows adjustment of the pH-dependent profile of the insulin release, as well as mucoadhesive properties and Ca(2+) binding ability of the microparticles. Supplementing the microparticles with 2-3% protease inhibitors fully prevents proteolysis of human insulin. The pharmacological effect of microencapsulated insulin in doses 50-100 IU kg(-1) is demonstrated in chronic experiments after oral administration to diabetic rats fed ad libitum.


Subject(s)
Administration, Oral , Chitosan/administration & dosage , Drug Delivery Systems , Insulin/administration & dosage , Animals , Biological Availability , Blood Glucose/drug effects , Cell-Derived Microparticles/chemistry , Chitosan/chemistry , Dextran Sulfate/administration & dosage , Dextran Sulfate/chemistry , Electrolytes/administration & dosage , Electrolytes/chemistry , Humans , Male , Polyelectrolytes , Polymers/administration & dosage , Polymers/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...