Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37630675

ABSTRACT

Acinetobacter baumannii is a Gram-negative coccobacillus with exceptional survival skills in an unfavorable environment and the ability to rapidly acquire antibiotic resistance, making it one of the most successful hospital pathogens worldwide, representing a serious threat to public health. The global dissemination of A. baumannii is driven by several lineages named 'international clones of high risk' (ICs), two of which were first revealed in the 1970s. Epidemiological surveillance is a crucial tool for controlling the spread of this pathogen, which currently increasingly involves whole genome sequencing. However, the assignment of a particular A. baumannii isolate to some IC based on its genomic sequence is not always straightforward and requires some computational skills from researchers, while the definitions found in the literature are sometimes controversial. In this review, we will focus on A. baumannii typing tools suitable for IC determination, provide data to easily determine IC assignment based on MLST sequence type (ST) and intrinsic blaOXA-51-like gene variants, discuss the history and current spread data of nine known ICs, IC1-IC9, and investigate the representation of ICs in public databases. MLST and cgMLST profiles, as well as OXA-51-like presence data are provided for all isolates available in GenBank. The possible emergence of a novel A. baumannii international clone, IC10, will be discussed.

2.
Microorganisms ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37317293

ABSTRACT

Klebsiella pneumoniae, a member of the Enterobacteriaceae family, has become a dangerous pathogen accountable for a large fraction of the various infectious diseases in both clinical and community settings. In general, the K. pneumoniae population has been divided into the so-called classical (cKp) and hypervirulent (hvKp) lineages. The former, usually developing in hospitals, can rapidly acquire resistance to a wide spectrum of antimicrobial drugs, while the latter is associated with more aggressive but less resistant infections, mostly in healthy humans. However, a growing number of reports in the last decade have confirmed the convergence of these two distinct lineages into superpathogen clones possessing the properties of both, and thus imposing a significant threat to public health worldwide. This process is associated with horizontal gene transfer, in which plasmid conjugation plays a very important role. Therefore, the investigation of plasmid structures and the ways plasmids spread within and between bacterial species will provide benefits in developing prevention measures against these powerful pathogens. In this work, we investigated clinical multidrug-resistant K. pneumoniae isolates using long- and short-read whole-genome sequencing, which allowed us to reveal fusion IncHI1B/IncFIB plasmids in ST512 isolates capable of simultaneously carrying hypervirulence (iucABCD, iutA, prmpA, peg-344) and resistance determinants (armA, blaNDM-1 and others), and to obtain insights into their formation and transmission mechanisms. Comprehensive phenotypic, genotypic and phylogenetic analysis of the isolates, as well as of their plasmid repertoire, was performed. The data obtained will facilitate epidemiological surveillance of high-risk K. pneumoniae clones and the development of prevention strategies against them.

3.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240444

ABSTRACT

Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage-bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Moths , Animals , Bacteriophages/genetics , Acinetobacter baumannii/metabolism , Larva/microbiology , Anti-Bacterial Agents/metabolism
4.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36838312

ABSTRACT

Salmonella enterica is an important foodborne pathogen worldwide. Ciprofloxacin and extended-spectrum cephalosporins are the common first-line antimicrobial drugs for the treatment of salmonellosis, antimicrobial resistance genes for which are mostly transferred via plasmids. The goal of this work was to perform genomic analysis of plasmids from foodborne S. enterica isolates obtained in Russia based on whole-genome sequencing. In the current study, 11 multidrug-resistant samples isolated in 2021 from 8 regions of Russia were selected based on their resistance to ciprofloxacin and third-generation cephalosporins (CIP-3rd). Whole-genome short-read sequencing (WGS) was performed for all isolates; the samples belonged to five different sequence types (ST32, ST469, ST11, ST142, and ST548) which had different profiles of antimicrobial resistance (AMR) and virulence genes. We have performed additional long-read sequencing of four representative S. enterica isolates, which showed that they carried pESI-like megaplasmids of 202-280 kb length harboring extended-spectrum ß-lactamase genes, fluoroquinolone, tetracycline, and aminoglycosides resistance genes, as well as several virulence determinants. We believe that the WGS data obtained will greatly facilitate further studies of foodborne S. enterica isolates epidemiology in terms of their self-transmissible plasmid composition that mediated antimicrobial resistance and virulence determinants conferring selective advantages of this important bacterial pathogen.

5.
Genome Med ; 15(1): 9, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36782220

ABSTRACT

BACKGROUND: Klebsiella pneumoniae, which is frequently associated with hospital- and community-acquired infections, contains multidrug-resistant (MDR), hypervirulent (hv), non-MDR/non-hv as well as convergent representatives. It is known that mostly international high-risk clonal lineages including sequence types (ST) 11, 147, 258, and 307 drive their global spread. ST395, which was first reported in the context of a carbapenemase-associated outbreak in France in 2010, is a less well-characterized, yet emerging clonal lineage. METHODS: We computationally analyzed a large collection of K. pneumoniae ST395 genomes (n = 297) both sequenced in this study and reported previously. By applying multiple bioinformatics tools, we investigated the core-genome phylogeny and evolution of ST395 as well as distribution of accessory genome elements associated with antibiotic resistance and virulence features. RESULTS: Clustering of the core-SNP alignment revealed four major clades with eight smaller subclades. The subclades likely evolved through large chromosomal recombination, which involved different K. pneumoniae donors and affected, inter alia, capsule and lipopolysaccharide antigen biosynthesis regions. Most genomes contained acquired resistance genes to extended-spectrum cephalosporins, carbapenems, and other antibiotic classes carried by multiple plasmid types, and many were positive for hypervirulence markers, including the siderophore aerobactin. The detection of "hybrid" resistance and virulence plasmids suggests the occurrence of the convergent ST395 pathotype. CONCLUSIONS: To the best of our knowledge, this is the first study that investigated a large international collection of K. pneumoniae ST395 genomes and elucidated phylogenetics and detailed genomic characteristics of this emerging high-risk clonal lineage.


Subject(s)
Drug Resistance, Bacterial , Genes, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents , beta-Lactamases/genetics , Carbapenems , Genomics , Klebsiella pneumoniae/genetics , Plasmids , Clone Cells , Drug Resistance, Bacterial/genetics
6.
J Fungi (Basel) ; 10(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38248921

ABSTRACT

BACKGROUND: Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS: The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS: We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION: High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.

7.
Sci Rep ; 12(1): 21610, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517537

ABSTRACT

Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.


Subject(s)
Typhaceae , Typhaceae/genetics , Hybridization, Genetic , High-Throughput Nucleotide Sequencing , DNA, Ribosomal/genetics , Nucleic Acid Hybridization , Phylogeny
8.
Antibiotics (Basel) ; 11(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290022

ABSTRACT

Klebsiella pneumoniae is a Gram-negative, encapsulated, non-motile bacterium, which represents a global challenge to public health as one of the major causes of healthcare-associated infections worldwide. In the recent decade, the World Health Organization (WHO) noticed a critically increasing rate of carbapenem-resistant K. pneumoniae occurrence in hospitals. The situation with extended-spectrum beta-lactamase (ESBL) producing bacteria further worsened during the COVID-19 pandemic, due to an increasing number of patients in intensive care units (ICU) and extensive, while often inappropriate, use of antibiotics including carbapenems. In order to elucidate the ways and mechanisms of antibiotic resistance spreading within the K. pneumoniae population, whole genome sequencing (WGS) seems to be a promising approach, and long-read sequencing is especially useful for the investigation of mobile genetic elements carrying antibiotic resistance genes, such as plasmids. We have performed short- and long read sequencing of three carbapenem-resistant K. pneumoniae isolates obtained from COVID-19 patients in a dedicated ICU of a multipurpose medical center, which belonged to the same clone according to cgMLST analysis, in order to understand the differences in their resistance profiles. We have revealed the presence of a small plasmid carrying aph(3')-VIa gene providing resistance to amikacin in one of these isolates, which corresponded perfectly to its phenotypic resistance profile. We believe that the results obtained will facilitate further elucidating of antibiotic resistance mechanisms for this important pathogen, and highlight the need for continuous genomic epidemiology surveillance of clinical K. pneumoniae isolates.

9.
Foods ; 11(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36076759

ABSTRACT

This study provides a thorough investigation of a diverse set of antimicrobial resistant (AMR) Staphylococcus aureus isolates collected from a broad range of ready-to-eat (RTE) food in various geographic regions of Russia ranging from Pskov to Kamchatka. Thirty-five isolates were characterized using the whole genome sequencing (WGS) analysis in terms of clonal structure, the presence of resistance and virulence determinants, as well as plasmid replicon sequences and CRISPR/Cas systems. To the best of our knowledge, this is the first WGS-based surveillance of Russian RTE food-associated S. aureus isolates. The isolates belonged to fifteen different multilocus sequence typing (MLST)-based types with a predominant being the ones of clonal complex (CC) 22. The isolates studied can pose a threat to public health since about 40% of the isolates carried at least one enterotoxin gene, and 70% of methicillin-resistant (MRSA) isolates carried a tsst1 gene encoding a toxin that may cause severe acute disease. In addition, plasmid analysis revealed some important characteristics, e.g., Rep5 and Rep20 plasmid replicons were a "signature" of MRSA CC22. By analyzing the isolates belonging to the same/single strain based on cgMLST analysis, we were able to identify the differences in their accessory genomes marking their dynamics and plasticity. This data is very important since S. aureus isolates studied and RTE food, in general, represent an important route of transmission and dissemination of multiple pathogenic determinants. We believe that the results obtained will facilitate performing epidemiological surveillance and developing protection measures against this important pathogen in community settings.

10.
Antibiotics (Basel) ; 11(3)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35326809

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has already affected all realms of public healthcare and, in particular, has led to increasing use of various antibiotics to treat possible bacterial coinfections even in cases for which such infections were not confirmed clinically. This could lead to an increase in the fraction and severity of multidrug-resistant bacterial isolates in healthcare facilities, especially in intensive care units (ICU). However, detailed epidemiological investigations, possibly including whole genome sequencing (WGS), are required to confirm the increase in antibiotic resistance and changes, if any, in the population and clonal structures of bacterial pathogens. In this study, we performed a comprehensive genomic and phenotypic characterization of selected multidrug-resistant A. baumannii isolates obtained from the patients of a dedicated COVID-19 ICU in Moscow, Russia. Hybrid short- and long-read sequencing allowed us to obtain complete profiles of genomic antimicrobial resistance and virulence determinants, as well as to reveal the plasmid structure. We demonstrated the genomic similarity in terms of cgMLST profiles of the isolates studied with a clone previously identified in the same facility. We believe that the data provided will contribute to better understanding the changes imposed by the COVID-19 pandemic on the population structure and the antimicrobial resistance of bacterial pathogens in healthcare facilities.

11.
Microorganisms ; 9(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34946117

ABSTRACT

Polymyxin resistance, determined by mcr genes located on plasmid DNA, currently poses a high epidemiological threat. Non-typhoid Salmonella (NTS) are one of the key pathogens causing diarrheal diseases. Here, we report the isolation and whole genome sequencing of multidrug colistin-resistant/susceptible isolates of non-typhoid Salmonella enterica serovars carrying mcr genes. Non-typhoid strains of Salmonella enterica subsp. enterica were isolated during microbiological monitoring of the environment, food, and diarrheal disease patients between 2018 and 2020 in Russia (n = 586). mcr-1 genes were detected using a previously developed qPCR assay, and whole genome sequencing of mcr positive isolates was performed by both short-read (Illumina) and long-read (Oxford Nanopore) approaches. Three colistin-resistant isolates, including two isolates of S. Enteritidis and one isolate of S. Bovismorbificans, carried the mcr-1.1 gene located on IncX4 and IncI2 conjugative plasmids, respectively. The phenotypically colistin-susceptible isolate of S. Typhimurium carried a mcr-9 gene on plasmid IncHI2. In conclusion, we present the first three cases of mcr gene-carrying NTS isolates detected in Russia with both outbreak and sporadic epidemiological backgrounds.

12.
Plants (Basel) ; 10(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34961196

ABSTRACT

14-3-3 proteins are key regulatory factors in plants and are involved in a broad range of physiological processes. We addressed the evolutionary history of 14-3-3s from 46 angiosperm species, including basal angiosperm Amborella and major lineage of monocotyledons and eudicotyledons. Orthologs of Arabidopsis isoforms were detected. There were several rounds of duplication events in the evolutionary history of the 14-3-3 protein family in plants. At least four subfamilies (iota, epsilon, kappa, and psi) formed as a result of ancient duplication in a common ancestor of angiosperm plants. Recent duplication events followed by gene loss in plant lineage, among others Brassicaceae, Fabaceae, and Poaceae, further shaped the high diversity of 14-3-3 isoforms in plants. Coexpression data showed that 14-3-3 proteins formed different functional groups in different species. In some species, evolutionarily related groups of 14-3-3 proteins had coexpressed together under certain physiological conditions, whereas in other species, closely related isoforms expressed in the opposite manner. A possible explanation is that gene duplication and loss is accompanied by functional plasticity of 14-3-3 proteins.

13.
Antibiotics (Basel) ; 10(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34827239

ABSTRACT

Pseudomonas aeruginosa is a member of the ESKAPE opportunistic pathogen group, which includes six species of the most dangerous microbes. This pathogen is characterized by the rapid acquisition of antimicrobial resistance, thus causing major healthcare concerns. This study presents a comprehensive analysis of clinical P. aeruginosa isolates based on whole-genome sequencing data. The isolate collection studied was characterized by a variety of clonal lineages with a domination of high-risk epidemic clones and different CRISPR/Cas element patterns. This is the first report on the coexistence of two and even three different types of CRISPR/Cas systems simultaneously in Russian clinical strains of P. aeruginosa. The data include molecular typing and genotypic antibiotic resistance determination, as well as the phylogenetic analysis of the full-length cas gene and anti-CRISPR genes sequences, predicted prophage sequences, and conducted a detailed CRISPR array analysis. The differences between the isolates carrying different types and quantities of CRISPR/Cas systems were investigated. The pattern of virulence factors in P. aeruginosa isolates lacking putative CRISPR/Cas systems significantly differed from that of samples with single or multiple putative CRISPR/Cas systems. We found significant correlations between the numbers of prophage sequences, antibiotic resistance genes, and virulence genes in P. aeruginosa isolates with different patterns of CRISPR/Cas-elements. We believe that the data presented will contribute to further investigations in the field of bacterial pathoadaptability, including antimicrobial resistance and the role of CRISPR/Cas systems in the plasticity of the P. aeruginosa genome.

14.
Viruses ; 13(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34578271

ABSTRACT

Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological features, genomic organization, and phage-host interaction strategy of novel virulent bacteriophage Aristophanes isolated on A. baumannii strain having K26 capsular polysaccharide structure. According to phylogenetic analysis phage Aristophanes can be classified as a representative of a new distinct genus of the subfamily Beijerinckvirinae of the family Autographiviridae. This is the first reported A. baumannii phage carrying tailspike deacetylase, which caused O-acetylation of one of the K26 sugar residues.


Subject(s)
Acinetobacter baumannii/virology , Amidohydrolases/genetics , Bacteriophages/enzymology , Bacteriophages/genetics , Viral Proteins/genetics , Bacterial Capsules/chemistry , Bacteriophages/isolation & purification , Genome, Viral , Genomics , Host Microbial Interactions , Sequence Analysis, DNA
15.
Antibiotics (Basel) ; 10(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34439060

ABSTRACT

Acinetobacter baumannii is a dangerous bacterial pathogen possessing the ability to persist on various surfaces, especially in clinical settings, and to rapidly acquire the resistance to a broad spectrum of antibiotics. Thus, the epidemiological surveillance of A. baumannii within a particular hospital, region, and across the world is an important healthcare task that currently usually includes performing whole-genome sequencing (WGS) of representative isolates. During the past years, the dissemination of A. baumannii across the world was mainly driven by the strains belonging to two major groups called the global clones or international clones (ICs) of high risk (IC1 and IC2). However, currently nine ICs are already considered. Although some clones were previously thought to spread in particular regions of the world, in recent years this is usually not the case. In this study, we determined five ICs, as well as three isolates not belonging to the major ICs, in one multidisciplinary medical center within the period 2017-2019. We performed WGS using both short- and long-read sequencing technologies of nine representative clinical A. baumannii isolates, which allowed us to determine the antibiotic resistance and virulence genomic determinants, reveal the CRISPR/Cas systems, and obtain the plasmid structures. The phenotypic and genotypic antibiotic resistance profiles are compared, and the possible ways of isolate and resistance spreading are discussed. We believe that the data obtained will provide a better understanding of the spreading and resistance acquisition of the ICs of A. baumannii and further stress the necessity for continuous genomic epidemiology surveillance of this problem-causing bacterial species.

16.
Viruses ; 13(6)2021 05 25.
Article in English | MEDLINE | ID: mdl-34070371

ABSTRACT

Acinetobacter baumannii, one of the most significant nosocomial pathogens, is capable of producing structurally diverse capsular polysaccharides (CPSs) which are the primary receptors for A. baumannii bacteriophages encoding polysaccharide-degrading enzymes. To date, bacterial viruses specifically infecting A. baumannii strains belonging to more than ten various capsular types (K types) were isolated and characterized. In the present study, we investigate the biological properties, genomic organization, and virus-bacterial host interaction strategy of novel myovirus TaPaz isolated on the bacterial lawn of A. baumannii strain with a K47 capsular polysaccharide structure. The phage linear double-stranded DNA genome of 93,703 bp contains 178 open reading frames. Genes encoding two different tailspike depolymerases (TSDs) were identified in the phage genome. Recombinant TSDs were purified and tested against the collection of A. baumannii strains belonging to 56 different K types. One of the TSDs was demonstrated to be a specific glycosidase that cleaves the K47 CPS by the hydrolytic mechanism.


Subject(s)
Acinetobacter baumannii/virology , Bacteriophages/genetics , Glycoside Hydrolases/genetics , Host-Pathogen Interactions , Viral Tail Proteins/genetics , Bacteriophages/enzymology , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Genome, Viral , Genomics/methods , Glycoside Hydrolases/metabolism , Host Specificity , Open Reading Frames , Phylogeny
18.
Pathogens ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668622

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen being one of the most important causative agents of a wide range of nosocomial infections associated with multidrug resistance and high mortality rate. This study presents a multiparametric and correlation analyses of clinical multidrug-resistant A. baumannii isolates using short- and long-read whole-genome sequencing, which allowed us to reveal specific characteristics of the isolates with different CRISPR/Cas systems. We also compared antibiotic resistance and virulence gene acquisition for the groups of the isolates having functional CRISPR/Cas systems, just CRISPR arrays without cas genes, and without detectable CRISPR spacers. The data include three schemes of molecular typing, phenotypic and genotypic antibiotic resistance determination, as well as phylogenetic analysis of full-length cas gene sequences, predicted prophage sequences and CRISPR array type determination. For the first time the differences between the isolates carrying Type I-F1 and Type I-F2 CRISPR/Cas systems were investigated. A. baumannii isolates with Type I-F1 system were shown to have smaller number of reliably detected CRISPR arrays, and thus they could more easily adapt to environmental conditions through acquisition of antibiotic resistance genes, while Type I-F2 A. baumannii might have stronger "immunity" and use CRISPR/Cas system to block the dissemination of these genes. In addition, virulence factors abaI, abaR, bap and bauA were overrepresented in A. baumannii isolates lacking CRISPR/Cas system. This indicates the role of CRISPR/Cas in fighting against phage infections and preventing horizontal gene transfer. We believe that the data presented will contribute to further investigations in the field of antimicrobial resistance and CRISPR/Cas studies.

19.
Microorganisms ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35056538

ABSTRACT

Non-typhoidal Salmonella infections remain a significant public health problem worldwide. In this study, we present the first detailed genomic analysis report based on short-read (Illumina) whole-genome sequencing (WGS) of 45 multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Infantis isolates from poultry and meat product samples obtained in Russia during 2018-2020, and long-read (MinION) WGS of five more representative isolates. We sought to determine whether foodborne S. Infantis have acquired new characteristics, traits, and dynamics in MDR growth in recent years. All sequenced isolates belonged to the sequence type ST32 and more than the half of isolates was characterized by six similar antimicrobial susceptibility profiles, most of which corresponded well with the antimicrobial resistance determinants to aminoglycosides, sulphonamides, tetracycline, and chloramphenicol revealed in silico. Some of the isolates were characterized by the presence of several types of plasmids simultaneously. Plasmid typing using WGS revealed Col440I, ColpVC, ColRNAI, IncFIB, IncFII, IncX1, IncHI2, IncHI2A, and IncN replicons. The identified virulence genes for 45 whole genomes of S. Infantis were similar and included 129 genes encoding structural components of the cell, factors responsible for successful invasion of the host, and secreted products. These data will be a valuable contribution to further comparative genomics of S. Infantis circulating in Russia, as well as to epidemiological surveillance of foodborne Salmonella isolates and investigations of Salmonella outbreaks.

20.
Antibiotics (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287207

ABSTRACT

Multidrug resistance (MDR) and hypervirulence (hv) have been long considered distinct evolutionary traits for Klebsiella pneumoniae (Kp), a versatile human pathogen. The recent emergence of Kp strains combining these traits poses a serious global threat. In this article, we describe the phenotypic and genomic characteristics of an MDR hvKp isolate, MAR14-456, representative of a nosocomial outbreak in Moscow, Russia, that was recovered from a postoperative wound in a patient who later developed multiple abscesses, fatal sepsis, and septic shock. Broth microdilution testing revealed decreased susceptibility of MAR14-456 to carbapenems (MICs 0.5-2 mg/L) and a high-level resistance to most ß-lactams, ß-lactam-ß-lactamase-inhibitor combinations, and non-ß-lactam antibiotics, except ceftazidime-avibactam, amikacin, tigecycline, and colistin. Whole-genome sequencing using Illumina MiSeq and ONT MinION systems allowed to identify and completely assemble two conjugative resistance plasmids, a typical 'European' epidemic IncL/M plasmid that carries the gene of OXA-48 carbapenemase, and an IncFIIK plasmid that carries the gene of CTX-M-15 ESBL and other resistance genes. MLST profile, capsular, lipopolysaccharide, virulence genes encoded on chromosome and IncHI1B/FIB plasmid, and the presence of apparently functional type I-E* CRISPR-Cas system were all characteristic of hvKp ST23, serotype K1-O1v2. Phylogenetic analysis showed the closest relatedness of MAR14-456 to ST23 isolates from China. This report highlights the threat of multiple resistance acquisition by hvKp strain and its spread as a nosocomial pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...