Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 335-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811734

ABSTRACT

Traditionally, magnetic solids are divided into two main classes-ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin-spin interaction arises owing to a strong spin-orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics1-5. In this way, they can be identified as closely related to the recently proposed new class of magnetic materials called altermagnets6-9. Altermagnets are predicted to have strong magneto-optical effects, terahertz-frequency spin dynamics and degeneracy lifting for chiral spin waves10 (that is, all of the effects present in the canted antiferromagnets11,12). Here, by utilizing these unique phenomena, we demonstrate a new functionality of canted spin order for magnonics and show that it facilitates mechanisms converting a magnon at the centre of the Brillouin zone into propagating magnons using nonlinear magnon-magnon interactions activated by an ultrafast laser pulse. Our experimental findings supported by theoretical analysis show that the mechanism is enabled by the spin canting.

2.
Nat Commun ; 13(1): 2998, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637202

ABSTRACT

Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in antiferromagnetic FeRh, but the mechanism and dynamics of this transition are topics of intense debates. Employing double-pump THz emission spectroscopy has enabled us to dramatically increase the temporal detection window of THz emission probes of transient states without sacrificing any loss of resolution or sensitivity. It allows us to study the kinetics of emergent ferromagnetism from the femtosecond up to the nanosecond timescales in FeRh/Pt bilayers. Our results strongly suggest a latency period between the initial pump-excitation and the emission of THz radiation by ferromagnetic nuclei.

3.
Nat Phys ; 17(9): 1001-1006, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34512793

ABSTRACT

Magnonics is a research field complementary to spintronics, in which quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation1-3. The development of ultrafast nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high, and wavelengths as short, as possible4,5. Antiferromagnets can host spin waves at terahertz (THz) frequencies and are therefore seen as a future platform for the fastest and the least dissipative transfer of information6-11. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometer-scale wavepacket of coherent propagating magnons in antiferromagnetic DyFeO3 using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent THz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate with supersonic velocities of more than 13 km/s into the material. This source of coherent short-wavelength spin carriers opens up new prospects for THz antiferromagnetic magnonics and coherence-mediated logic devices at THz frequencies.

4.
Nat Mater ; 20(5): 607-611, 2021 May.
Article in English | MEDLINE | ID: mdl-33558717

ABSTRACT

Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6.

5.
Phys Rev Lett ; 125(15): 157201, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095611

ABSTRACT

The microscopic origin of ultrafast modification of the ratio between the symmetric (J) and antisymmetric (D) exchange interaction in antiferromagnetic iron oxides is revealed, using femtosecond laser excitation as a pump and terahertz emission spectroscopy as a probe. By tuning the photon energy of the laser pump pulse we show that the effect of light on the D/J ratio in two archetypical iron oxides FeBO_{3} and ErFeO_{3} is maximized when the photon energy is in resonance with a spin and parity forbidden d-d transition between the crystal-field split states of Fe^{3+} ions. The experimental findings are supported by a multielectron model, which accounts for the resonant absorption of photons by Fe^{3+} ions. Our results reveal the importance of the parity and spin-change forbidden, and therefore often underestimated, d-d transitions in ultrafast optical control of magnetism.

6.
Phys Rev Lett ; 123(15): 157202, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31702317

ABSTRACT

A nearly single cycle intense terahertz (THz) pulse with peak electric and magnetic fields of 0.5 MV/cm and 0.16 T, respectively, excites both modes of spin resonances in the weak antiferromagnet FeBO_{3}. The high frequency quasiantiferromagnetic mode is excited resonantly and its amplitude scales linearly with the strength of the THz magnetic field, whereas the low frequency quasiferromagnetic mode is excited via a nonlinear mechanism that scales quadratically with the strength of the THz electric field and can be regarded as a THz inverse Cotton-Mouton effect. THz optomagnetism is shown to be more energy efficient than similar effects reported previously for the near-infrared spectral range.

7.
J Phys Condens Matter ; 31(43): 435401, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31300631

ABSTRACT

We investigate the spin relaxation under conditions of optical excitation between the Rydberg orbital states of phosphorus donor impurities in silicon. Here we show that the spin relaxation is less than a few percent, even after multiple excitation/relaxation cycles. The observed high level of spin preservation may be useful for readout cycling or in quantum information schemes where coupling of neighbor qubits is via orbital excitation.

8.
Nature ; 569(7756): 383-387, 2019 05.
Article in English | MEDLINE | ID: mdl-31092937

ABSTRACT

Future information technology demands ever-faster, low-loss quantum control. Intense light fields have facilitated milestones along this way, including the induction of novel states of matter1-3, ballistic acceleration of electrons4-7 and coherent flipping of the valley pseudospin8. These dynamics leave unique 'fingerprints', such as characteristic bandgaps or high-order harmonic radiation. The fastest and least dissipative way of switching the technologically most important quantum attribute-the spin-between two states separated by a potential barrier is to trigger an all-coherent precession. Experimental and theoretical studies with picosecond electric and magnetic fields have suggested this possibility9-11, yet observing the actual spin dynamics has remained out of reach. Here we show that terahertz electromagnetic pulses allow coherent steering of spins over a potential barrier, and we report the corresponding temporal and spectral fingerprints. This goal is achieved by coupling spins in antiferromagnetic TmFeO3 (thulium orthoferrite) with the locally enhanced terahertz electric field of custom-tailored antennas. Within their duration of one picosecond, the intense terahertz pulses abruptly change the magnetic anisotropy and trigger a large-amplitude ballistic spin motion. A characteristic phase flip, an asymmetric splitting of the collective spin resonance and a long-lived offset of the Faraday signal are hallmarks of coherent spin switching into adjacent potential minima, in agreement with numerical simulations. The switchable states can be selected by an external magnetic bias. The low dissipation and the antenna's subwavelength spatial definition could facilitate scalable spin devices operating at terahertz rates.

9.
Phys Rev Lett ; 118(1): 017205, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106410

ABSTRACT

We show that femtosecond laser pulse excitation of the orthoferrite ErFeO_{3} triggers pico- and subpicosecond dynamics of magnetic and electric dipoles associated with the low energy electronic states of the Er^{3+} ions. These dynamics are readily revealed by using polarization sensitive terahertz emission spectroscopy. It is shown that by changing the polarization of the femtosecond laser pulse one can excite either electric dipole-active or magnetic dipole-active transitions between the Kramers doublets of the ^{4}I_{15/2} ground state of the Er^{3+} (4f^{11}) ions. These observations serve as a proof of principle of polarization-selective control of both electric and magnetic degrees of freedom at terahertz frequencies, opening up new vistas for optical manipulation of magnetoelectric materials.

10.
Nat Nanotechnol ; 11(5): 455-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26854566

ABSTRACT

The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10(12) Hz) emission spectroscopy and exploiting the spin-orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

11.
Nat Commun ; 6: 8190, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26373688

ABSTRACT

Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

12.
Nano Lett ; 12(7): 3640-4, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22594393

ABSTRACT

Using a modal matching theory, we demonstrate the generation of short-range, chiral electromagnetic fields via the excitation of arrays of staggered nanoslits that are chiral in two dimensions. The electromagnetic near fields, which exhibit a chiral density greater than that of circularly polarized light, can enhance the chiroptical interactions in the vicinity of the nanoslits. We discuss the features of nanostructure symmetry required to obtain the chiral fields and explicitly show how these structures can give rise to detection and characterization of materials with chiral symmetry.

13.
Nat Nanotechnol ; 5(11): 783-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21037572

ABSTRACT

The spectroscopic analysis of large biomolecules is important in applications such as biomedical diagnostics and pathogen detection, and spectroscopic techniques can detect such molecules at the nanogram level or lower. However, spectroscopic techniques have not been able to probe the structure of large biomolecules with similar levels of sensitivity. Here, we show that superchiral electromagnetic fields, generated by the optical excitation of plasmonic planar chiral metamaterials, are highly sensitive probes of chiral supramolecular structure. The differences in the effective refractive indices of chiral samples exposed to left- and right-handed superchiral fields are found to be up to 10(6) times greater than those observed in optical polarimetry measurements, thus allowing picogram quantities of adsorbed molecules to be characterized. The largest differences are observed for biomolecules that have chiral planar sheets, such as proteins with high ß-sheet content, which suggests that this approach could form the basis for assaying technologies capable of detecting amyloid diseases and certain types of viruses.


Subject(s)
Circular Dichroism , Nanotechnology/methods , Proteins/chemistry , Electromagnetic Fields , Isomerism , Models, Molecular , Protein Conformation , Proteins/classification , Sensitivity and Specificity
14.
Opt Express ; 18(21): 22406-11, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20941140

ABSTRACT

To enhance terahertz emission from an optically excited semiconductor surface, we propose to sandwich a thin (as compared to the terahertz wavelength) semiconductor layer between a dielectric hyperhemispherical lens and metal substrate. The layer is excited through the lens. The substrate provides constructive interference of terahertz waves emitted to the lens directly from the layer and reflected by the substrate. The lens outcouples terahertz radiation into free space. For InAs layer sandwiched between MgO (or sapphire) lens and metal substrate, our theory predicts order of magnitude increase in the terahertz yield as compared to the previous schemes of terahertz emission from semiconductor surfaces.

15.
Opt Express ; 18(2): 1684-94, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173996

ABSTRACT

We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.


Subject(s)
Lasers , Models, Theoretical , Terahertz Radiation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...