Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 45(19): 5377-5380, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001898

ABSTRACT

We demonstrate an increase of optical transmittance and saturable absorption of laser-treated free-standing single-walled carbon nanotube (SWNT) films. The combined acid and low-power non-destructive laser treatment ensures an enhancement of linear transmittance across the visible range and double-digit increase of the saturable absorption of femtosecond laser radiation at 795 nm. The saturable absorption coefficient and the ratio of saturable to non-saturable losses increase by 26% and 35%, correspondingly, while the saturation intensity decreases by 20% because of the treatment. Our analysis indicates that with the performed treatment one can significantly improve the nonlinear optical properties of free-standing SWNT-based ultrafast saturable absorbers.

2.
Opt Lett ; 45(7): 2022-2025, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236058

ABSTRACT

We report the helicity-dependent photocurrent in the carbon nanowall film synthesized on the silicon substrates by the chemical vapor deposition technique. The film is composed of multilayer graphene flakes grown along the substrate normal. We measured the transverse photocurrent generated in the film under irradiation with nanosecond laser pulses by depositing two conductive electrodes along the plane of incidence. The measurements were performed by using elliptically polarized fundamental, second-, third-, and fourth-harmonics beams of the Nd:YAG laser. We revealed that the shorter the excitation wavelength, the higher the magnitude of the helicity-dependent transverse photocurrent generated in the film. In particular, at wavelengths of 266 and 355 nm, the photocurrent strongly depends on the degree of the circular polarization of the laser beam while, at the wavelength of 1064 nm, the transverse photocurrent is almost helicity independent.

3.
Sci Rep ; 8(1): 8644, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872143

ABSTRACT

Photon drag effect (PDE) and surface photogalvanic effect (SPGE) can be observed in centrosymmetric media and manifest themselves in photocurrents, the magnitude and polarity of which depend on wavevector and polarization of the excitation laser beam. PDE photocurrent originates from the transfer of the photon momentum to a free charge carrier, while SPGE photocurrent is due to diffuse scattering of the photoexcited carriers in the subsurface layer. However, despite the different underlying physical mechanisms, these photocurrents have almost indistinguishable dependencies on the polarization and the angle of incidence of the excitation laser beam. In this paper, we observe for the first time a competition between PDE and SPGE in the film containing metal (Ag-Pd) and semiconductor (PdO) nanocrystallites. We show that, depending on the angle of incidence, polarization azimuth and wavelength of the excitation laser beam, the interplay of the PDE and SPGE leads to the generation of either monopolar or bipolar nanosecond current pulses. The experiments performed allow us to visualize the contributions both these effects and obtain light-to-current conversion efficiency in a wide spectral range. Our experimental findings can be employed to control the magnitude and polarity of the light-induced current by polarization of the excitation laser beam.

SELECTION OF CITATIONS
SEARCH DETAIL