Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960925

ABSTRACT

Small additions of nanofiber materials make it possible to change the properties of polymers. However, the uniformity of the additive distribution and the strength of its bond with the polymer matrix are determined by the surface of the nanofibers. Silanes, in particular, allow you to customize the surface for better interaction with the matrix. The aim of our work is to study an approach to silanization of nanofibers of aluminum oxide to obtain a perfect interface between the additive and the matrix. The presence of target silanes on the surface of nanofibers was shown by XPS methods. The presence of functional groups on the surface of nanofibers was also shown by the methods of simultaneous thermal analysis, and the stoichiometry of functional groups with respect to the initial hydroxyl groups was studied. The number of functional groups precipitated from silanes is close to the number of the initial hydroxyl groups, which indicates a high uniformity of the coating in the proposed method of silanization. The presented technology for silanizing alumina nanofibers is an important approach to the subsequent use of this additive in various polymer matrices.

2.
ACS Appl Mater Interfaces ; 13(27): 32531-32541, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34181393

ABSTRACT

Copper-doped titanium oxynitride (TiNxOy) thin films were grown by atomic layer deposition (ALD) using the TiCl4 precursor, NH3, and O2 at 420 °C. Forming gas was used to reduce the background oxygen concentration and to transfer the copper atoms in an ALD chamber prior to the growth initiation of Cu-doped TiNxOy. Such forming gas-mediated Cu-doping of TiNxOy films had a pronounced effect on their resistivity, which dropped from 484 ± 8 to 202 ± 4 µΩ cm, and also on the resistance temperature coefficient (TCR), which decreased from 1000 to 150 ppm °C-1. We explored physical mechanisms causing this reduction by performing comparative analysis of atomic force microscopy, X-ray photoemission spectroscopy, X-ray diffraction, optical spectra, low-temperature transport, and Hall measurement data for the samples grown with and without forming gas doping. The difference in the oxygen concentration between the films did not exceed 6%. Copper segregated to the TiNxOy surface where its concentration reached 0.72%, but its penetration depth was less than 10 nm. Pronounced effects of the copper doping by forming gas included the TiNxOy film crystallite average size decrease from 57-59 to 32-34 nm, considerably finer surface granularity, electron concentration increase from 2.2(3) × 1022 to 3.5(1) × 1022 cm-3, and the electron mobility improvement from 0.56(4) to 0.92(2) cm2 V-1 s-1. The DC resistivity versus temperature R(T) measurements from 4.2 to 300 K showed a Cu-induced phase transition from a disordered to semimetallic state. The resistivity of Cu-doped TiNxOy films decreased with the temperature increase at low temperatures and reached the minimum near T = 50 K revealing signatures of the quantum interference effects similar to 2D Cu thin films, and then, semimetallic behavior was observed at higher temperatures. In TiNxOy films grown without forming gas, the resistivity decreased with the temperature increase as R(T) = - 1.88T0.6 + 604 µΩ cm with no semimetallic behavior observed. The medium range resistivity and low TCR of Cu-doped TiNxOy make this material an attractive choice for improved matching resistors in RF analog circuits and Si complementary metal-oxide-semiconductor integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...