Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters










Publication year range
1.
Proteins ; 92(6): 768-775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38235908

ABSTRACT

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Subject(s)
Amino Acid Sequence , Archaeal Proteins , Guanosine Triphosphate , Magnesium , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor) , Thermococcus , Thermococcus/enzymology , Thermococcus/genetics , Thermococcus/chemistry , Crystallography, X-Ray , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Magnesium/metabolism , Magnesium/chemistry , Mutagenesis, Site-Directed , Catalytic Domain , Binding Sites , Substrate Specificity , Coenzyme A/metabolism , Coenzyme A/chemistry , Protein Binding
2.
Biochim Biophys Acta Gen Subj ; 1868(3): 130549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158023

ABSTRACT

BACKGROUND: Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by ß - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity and the conformational switch from open to closed structures are still a mystery. METHODS: The GH-46 subclass III chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), which also catalyzes the hydrolysis of GlcN-GlcNAc bonds in addition to GlcN-GlcN, has had its chitotetraose [(GlcN)4]-complexed crystal structure solved at 1.35 Å resolution. RESULTS: The MH-K1 chitosanase's (GlcN)4-bound structure has numerous structural similarities to other GH-46 chitosanases in terms of substrate binding and catalytic processes. However, subsite -1, which is absolutely specific for GlcN, seems to characterize the structure of a subclass III chitosanase due to its distinctive length and angle of a flexible loop. According to a comparison of the (GlcN)4-bound and apo-form structures, the particular binding of a GlcN residue at subsite -2 through Asp77 causes the backbone helix to kink, which causes the upper- and lower-domains to approach closely when binding a substrate. CONCLUSIONS: Although GH-46 chitosanases vary in the finer details of the subsites defining cleavage specificity, they share similar structural characteristics in substrate-binding, catalytic processes, and potentially in conformational change. GENERAL SIGNIFICANCE: The precise binding of a GlcN residue to the -2 subsite is essential for the conformational shift that occurs in all GH-46 chitosanases, as shown by the crystal structures of the apo- and substrate-bound forms of MH-K1 chitosanase.


Subject(s)
Bacillus , Chitosan , Oligosaccharides , Glycoside Hydrolases/metabolism , Glucosamine/metabolism
3.
Biophys Physicobiol ; 20(3): e200035, 2023.
Article in English | MEDLINE | ID: mdl-38124796

ABSTRACT

Neutron crystallography is a highly effective method for visualizing hydrogen atoms in proteins. In our recent study, we successfully determined the high-resolution (1.2 Å) neutron structure of high-potential iron-sulfur protein, refining the coordinates of some amide protons without any geometric restraints. Interestingly, we observed that amide protons are deviated from the peptide plane due to electrostatic interactions. Moreover, the difference in the position of the amide proton of Cys75 between reduced and oxidized states is possibly attributed to the electron storage capacity of the iron-sulfur cluster. Additionally, we have discussed about the rigidity of the iron-sulfur cluster based on the results of the hydrogen-deuterium exchange. Our research underscores the significance of neutron crystallography in protein structure elucidation, enriching our understanding of protein functions at an atomic resolution.

4.
Biophys Physicobiol ; 19: 1-10, 2022.
Article in English | MEDLINE | ID: mdl-35797404

ABSTRACT

Ever since the historic discovery of the cooperative oxygenation of its multiple subunits, hemoglobin (Hb) has been among the most exhaustively studied allosteric proteins. However, the lack of structural information on the intermediates between oxygenated and deoxygenated forms prevents our detailed understanding of the molecular mechanism of its allostery. It has been difficult to prepare crystals of intact oxy-deoxy intermediates and to individually identify the oxygen saturation for each subunit. However, our recent crystallographic studies have demonstrated that giant Hbs from annelids are suitable for overcoming these problems and can provide abundant information on oxy-deoxy intermediate structures. Here, we report the crystal structures of oxy-deoxy intermediates of a 400 kDa Hb (V2Hb) from the annelid Lamellibrachia satsuma, following up on a series of previous studies of similar giant Hbs. Four intermediate structures had average oxygen saturations of 78%, 69%, 55%, and 26%, as determined by the occupancy refinement of the bound oxygen based on ambient temperature factors. The structures demonstrate that the cooperative oxygen dissociation is weaker, large ternary and quaternary changes are induced at a later stage of the oxygen dissociation process, and the ternary and quaternary changes are smaller with local perturbations. Nonetheless, the overall structural transition seemed to proceed in the manner of the MWC two-state model. Our crystallographic snapshots of the allosteric transition of V2Hb provide important experimental evidence for a more detailed understanding of the allostery of Hbs by extension of the Monod-Wyman-Changeux (MWC) model.

5.
Biochem Biophys Res Commun ; 621: 162-167, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35839743

ABSTRACT

Amyloid ß-protein (Aß) oligomers are involved in the early stages of Alzheimer's disease (AD) and antibodies against these toxic oligomers could be useful for accurate diagnosis of AD. We identified the toxic conformer of Aß42 with a turn at positions 22/23, which has a propensity to form toxic oligomers. The antibody 24B3, developed by immunization of a toxic conformer surrogate E22P-Aß9-35 in mice, was found to be useful for AD diagnosis using human cerebrospinal fluid (CSF). However, it is not known how 24B3 recognizes the toxic conformation of wild-type Aß in CSF. Here, we report the crystal structure of 24B3 Fab complexed with E22P-Aß11-34, whose residues 16-26 were observed in electron densities, suggesting that the residues comprising the toxic turn at positions 22/23 were recognized by 24B3. Since 24B3 bound only to Aß42 aggregates, several conformationally restricted analogs of Aß42 with an intramolecular disulfide bond to mimic the conformation of toxic Aß42 aggregates were screened by enzyme immunoassay. As a result, only F19C,A30homoC-SS-Aß42 (1) bound significantly to 24B3. These data provide a structural basis for its low affinity to the Aß42 monomer and selectivity for its aggregate form.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Monoclonal , Humans , Mice , Molecular Conformation , Peptide Fragments/chemistry
6.
Sci Adv ; 8(20): eabn2276, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35594350

ABSTRACT

The planarity of the peptide bond is important for the stability and structure formation of proteins. However, substantial distortion of peptide bonds has been reported in several high-resolution structures and computational analyses. To investigate the peptide bond planarity, including hydrogen atoms, we report a 1.2-Šresolution neutron structure of the oxidized form of high-potential iron-sulfur protein. This high-resolution neutron structure shows that the nucleus positions of the amide protons deviate from the peptide plane and shift toward the acceptors. The planarity of the H─N─C═O plane depends strongly on the pyramidalization of the nitrogen atom. Moreover, the orientation of the amide proton of Cys75 is different in the reduced and oxidized states, possibly because of the electron storage capacity of the iron-sulfur cluster.

7.
IUCrJ ; 8(Pt 6): 954-962, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34804547

ABSTRACT

Cooperative oxygen binding of hemoglobin (Hb) has been studied for over half a century as a representative example of the allostericity of proteins. The most important problem remaining to be solved is the lack of structural information on the intermediates between the oxygenated and deoxygenated forms. In order to characterize the intermediate structures, it is necessary to obtain intermediate-state crystals, determine their oxygen saturations and then determine the oxygen saturations of each of their constituent subunits, all of which are challenging issues even now. Here, intermediate forms of the 400 kDa giant Hb from the tubeworm Oligobrachia mashikoi are reported. To overcome the above problems without any artificial modifications to the protein or prosthetic groups, intermediate crystals of the giant Hb were prepared from fully oxygenated crystals by a soaking method. The oxygen saturation of the crystals was measured by in situ observation with a microspectrophotometer using thin plate crystals processed by an ultraviolet laser to avoid saturation of absorption. The oxygen saturation of each subunit was determined by occupancy refinement of the bound oxygen based on ambient temperature factors. The obtained structures reveal the detailed relationship between the structural transition and oxygen dissociation. The dimer subassembly of the giant Hb shows strong correlation with the local structural changes at the heme pockets. Although some local ternary-structural changes occur in the early stages of the structural transition, the associated global ternary-structural and quaternary-structural changes might arise at about 50% oxygen saturation. The models based on coarse snapshots of the allosteric transition support the conventional two-state model of Hbs and provide the missing pieces of the intermediate structures that are required for full understanding of the allosteric nature of Hbs in detail.

8.
ACS Chem Neurosci ; 12(18): 3418-3432, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34464082

ABSTRACT

Characterization of amyloid ß (Aß) oligomers, the transition species present prior to the formation of Aß fibrils and that have cytotoxicity, has become one of the major topics in the investigations of Alzheimer's disease (AD) pathogenesis. However, studying pathophysiological properties of Aß oligomers is challenging due to the instability of these protein complexes in vitro. Here, we report that conformation-restricted Aß42 with an intramolecular disulfide bond at positions 17 and 28 (SS-Aß42) formed stable Aß oligomers in vitro. Thioflavin T binding assays, nondenaturing gel electrophoresis, and morphological analyses revealed that SS-Aß42 maintained oligomeric structure, whereas wild-type Aß42 and the highly aggregative Aß42 mutant with E22P substitution (E22P-Aß42) formed Aß fibrils. In agreement with these observations, SS-Aß42 was more cytotoxic compared to the wild-type and E22P-Aß42 in cell cultures. Furthermore, we developed a monoclonal antibody, designated TxCo-1, using the toxic conformation of SS-Aß42 as immunogen. X-ray crystallography of the TxCo-1/SS-Aß42 complex, enzyme immunoassay, and immunohistochemical studies confirmed the recognition site and specificity of TxCo-1 to SS-Aß42. Immunohistochemistry with TxCo-1 antibody identified structures resembling senile plaques and vascular Aß in brain samples of AD subjects. However, TxCo-1 immunoreactivity did not colocalize extensively with Aß plaques identified with conventional Aß antibodies. Together, these findings indicate that Aß with a turn at positions 22 and 23, which is prone to form Aß oligomers, could show strong cytotoxicity and accumulated in brains of AD subjects. The SS-Aß42 and TxCo-1 antibody should facilitate understanding of the pathological role of Aß with toxic conformation in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Peptide Fragments , Plaque, Amyloid
9.
J Bacteriol ; 203(16): e0002521, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34096778

ABSTRACT

Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O-phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk-SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here, we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk-SerK from Euryarchaeota (42 to 45% identical). Tk-serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli. All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity for l-Ser but not other compounds, including d-Ser, l-threonine, and l-homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as phosphate donors. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5'-triphosphates over triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis (Tk-SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk-SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.


Subject(s)
Archaeal Proteins/metabolism , Desulfurococcaceae/enzymology , Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Desulfurococcaceae/classification , Desulfurococcaceae/genetics , Hot Temperature , Kinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
ACS Chem Biol ; 16(5): 794-799, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33877806

ABSTRACT

Most kinases utilize ATP as a phosphate donor and phosphorylate a wide range of phosphate acceptors. An alternative phosphate donor is inorganic pyrophosphate (PPi), which costs only 1/1000 of ATP. To develop a method to engineer PPi-dependent kinases, we herein aimed to alter the product of PPi-dependent myo-inositol kinase from d-myo-inositol 1-phosphate to d-myo-inositol 3-phosphate. For this purpose, we introduced the myo-inositol recognition residues of the ATP-dependent myo-inositol-3-kinase into the PPi-dependent myo-inositol-1-kinase. This replacement was expected to change the 3D arrangements of myo-inositol in the active site and bring the hydroxyl group at the 3C position close to the catalytic residue. LC-MS and NMR analyses proved that the engineered enzyme successfully produced myo-inositol 3-phosphate from PPi and myo-inositol.


Subject(s)
Diphosphates/chemistry , Phosphoric Monoester Hydrolases/chemistry , Thermotoga maritima/enzymology , Catalytic Domain , Crystallization , Inositol Phosphates/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Mutant Proteins/chemistry , Mutation , Phosphorylation , Protein Conformation , Tandem Mass Spectrometry
11.
Structure ; 29(7): 721-730.e6, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33651974

ABSTRACT

Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split conformation of Hsp104 disaggregase from Chaetomium thermophilum (CtHsp104) in the presence of ADP by X-ray crystallography, cryo-electron microscopy (EM), and high-speed atomic force microscopy (AFM). ADP-bound CtHsp104 assembles into a 65 left-handed spiral filament in the crystal structure at a resolution of 2.7 Å. The unit of the filament is a hexamer of the split spiral structure. In the cryo-EM images, staggered and split hexameric rings were observed. Further, high-speed AFM observations showed that a substrate addition enhanced the conformational change and increased the split structure's frequency. Our data suggest that split conformation is an off-pathway state of CtHsp104 during disaggregation.


Subject(s)
Adenosine Diphosphate/metabolism , Chaetomium/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , Chaetomium/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Fungal Proteins/chemistry , Microscopy, Atomic Force , Models, Molecular , Protein Aggregates , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization
12.
Acc Chem Res ; 53(4): 875-886, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32227866

ABSTRACT

[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.


Subject(s)
Hydrogenase/chemistry , Hydrogenase/metabolism , Biocatalysis , Protein Binding
13.
ACS Chem Biol ; 15(6): 1517-1525, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32227910

ABSTRACT

Terpene synthases (TS) are classified into two broad types, Class I and II, based on the chemical strategy for initial carbocation formation and motif sequences of the catalytic site. We have recently identified a new class of enzymes, Class IB, showing the acceptability of long (C20-C35) prenyl-diphosphates as substrates and no amino acid sequence homology with known TS. Conversion of long prenyl-diphosphates such as heptaprenyl-diphosphate (C35) is unusual and has never been reported for Class I and II enzymes. Therefore, the characterization of Class IB enzymes is crucial to understand the reaction mechanism of the extensive terpene synthesis. Here, we report the crystal structure bound with a substrate surrogate and biochemical analysis of a Class IB TS, using the enzyme from Bacillus alcalophilus (BalTS). The structure analysis revealed that the diphosphate part of the substrate is located around the two characteristic Asp-rich motifs, and the hydrophobic tail is accommodated in a unique hydrophobic long tunnel, where the C35 prenyl-diphosphate, the longest substrate of BalTS, can be accepted. Biochemical analyses of BalTS showed that the enzymatic property, such as Mg2+ dependency, is similar to those of Class I enzymes. In addition, a new cyclic terpene was identified from BalTS reaction products. Mutational analysis revealed that five of the six Asp residues in the Asp-rich motifs and two His residues are essential for the formation of the cyclic skeleton. These results provided a clue to consider the application of the unusual large terpene synthesis by Class IB enzymes.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Bacillus/enzymology , Carbon-13 Magnetic Resonance Spectroscopy , Crystallography, X-Ray , Protein Conformation , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Substrate Specificity
14.
Proteins ; 88(2): 251-259, 2020 02.
Article in English | MEDLINE | ID: mdl-31365157

ABSTRACT

Perdeuteration in neutron crystallography is an effective method for determining the positions of hydrogen atoms in proteins. However, there is shortage of evidence that the high-resolution details of perdeuterated proteins are consistent with those of the nondeuterated proteins. In this study, we determined the X-ray structure of perdeuterated high-potential iron-sulfur protein (HiPIP) at a high resolution of 0.85 å resolution. The comparison of the nondeuterated and perdeuterated structures of HiPIP revealed slight differences between the two structures. The spectroscopic and spectroelectrochemical studies also showed that perdeuterated HiPIP has approximately the same characteristics as nondeuterated HiPIP. These results further emphasize the suitability of using perdeuterated proteins in the high-resolution neutron crystallography.


Subject(s)
Bacterial Proteins/chemistry , Chromatiaceae/metabolism , Deuterium/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Protein Conformation , Circular Dichroism , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Neutrons
15.
Proteins ; 88(5): 718-724, 2020 05.
Article in English | MEDLINE | ID: mdl-31697438

ABSTRACT

The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4'-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity. Based on the structure of the active site that contains a glycerol molecule, the pantoate binding site and the roles of the highly conserved residues are suggested.


Subject(s)
Adenosine Triphosphate/chemistry , Archaeal Proteins/chemistry , Hydroxybutyrates/chemistry , Magnesium/chemistry , Phosphotransferases/chemistry , Thermococcus/enzymology , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Cations, Divalent , Coenzyme A/biosynthesis , Crystallography, X-Ray , Gene Expression , Glycerol/chemistry , Glycerol/metabolism , Hydroxybutyrates/metabolism , Magnesium/metabolism , Models, Molecular , Phosphotransferases/genetics , Phosphotransferases/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermococcus/genetics
16.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1096-1106, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31793903

ABSTRACT

Hydrogen atoms are critical to the nature and properties of proteins, and thus deuteration has the potential to influence protein function. In fact, it has been reported that some deuterated proteins show different physical and chemical properties to their protiated counterparts. Consequently, it is important to investigate protonation states around the active site when using deuterated proteins. Here, hydrogen isotope effects on the S65T/F99S/M153T/V163A variant of green fluorescent protein (GFP), in which the deprotonated B form is dominant at pH 8.5, were investigated. The pH/pD dependence of the absorption and fluorescence spectra indicates that the protonation state of the chromophore is the same in protiated GFP in H2O and protiated GFP in D2O at pH/pD 8.5, while the pKa of the chromophore became higher in D2O. Indeed, X-ray crystallographic analyses at sub-ångström resolution revealed no apparent changes in the protonation state of the chromophore between the two samples. However, detailed comparisons of the hydrogen OMIT maps revealed that the protonation state of His148 in the vicinity of the chromophore differed between the two samples. This indicates that protonation states around the active site should be carefully adjusted to be the same as those of the protiated protein when neutron crystallographic analyses of proteins are performed.


Subject(s)
Crystallography, X-Ray/methods , Deuterium/chemistry , Green Fluorescent Proteins/chemistry , Protein Folding , Fluorescence , Hydrogen Bonding , Kinetics , Models, Molecular , Protein Conformation
17.
IUCrJ ; 6(Pt 3): 387-400, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31098020

ABSTRACT

Green fluorescent protein (GFP) is a light-emitting protein that does not require a prosthetic group for its fluorescent activity. As such, GFP has become indispensable as a molecular tool in molecular biology. Nonetheless, there has been no subatomic elucidation of the GFP structure owing to the structural polymorphism around the chromophore. Here, subatomic resolution X-ray structures of GFP without the structural polymorphism are reported. The positions of H atoms, hydrogen-bonding network patterns and accurate geometric parameters were determined for the two protonated forms. Compared with previously determined crystal structures and theoretically optimized structures, the anionic chromophores of the structures represent the authentic resonance state of GFP. In addition, charge-density analysis based on atoms-in-molecules theory and noncovalent interaction analysis highlight weak but substantial interactions between the chromophore and the protein environment. Considered with the derived chemical indicators, the lone pair-π interactions between the chromophore and Thr62 should play a sufficient role in maintaining the electronic state of the chromophore. These results not only reveal the fine structural features that are critical to understanding the properties of GFP, but also highlight the limitations of current quantum-chemical calculations.

18.
Proc Natl Acad Sci U S A ; 115(47): 11953-11957, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397130

ABSTRACT

Heme A is an essential cofactor for respiratory terminal oxidases and vital for respiration in aerobic organisms. The final step of heme A biosynthesis is formylation of the C-8 methyl group of heme molecule by heme A synthase (HAS). HAS is a heme-containing integral membrane protein, and its structure and reaction mechanisms have remained unknown. Thus, little is known about HAS despite of its importance. Here we report the crystal structure of HAS from Bacillus subtilis at 2.2-Å resolution. The N- and C-terminal halves of HAS consist of four-helix bundles and they align in a pseudo twofold symmetry manner. Each bundle contains a pair of histidine residues and forms a heme-binding domain. The C-half domain binds a cofactor-heme molecule, while the N-half domain is vacant. Many water molecules are found in the transmembrane region and around the substrate-binding site, and some of them interact with the main chain of transmembrane helix. Comparison of these two domain structures enables us to construct a substrate-heme binding state structure. This structure implies that a completely conserved glutamate, Glu57 in B. subtilis, is the catalytic residue for the formylation reaction. These results provide valuable suggestions of the substrate-heme binding mechanism. Our results present significant insight into the heme A biosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cytochrome b Group/chemistry , Cytochrome b Group/ultrastructure , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray/methods , Heme/analogs & derivatives , Heme/metabolism , Membrane Proteins/metabolism , Models, Molecular , Oxidoreductases/metabolism
19.
Sci Rep ; 8(1): 13123, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177765

ABSTRACT

Bacteriorhodopsin (bR) of Halobacterium salinarum is a membrane protein that acts as a light-driven proton pump. bR and its homologues have recently been utilized in optogenetics and other applications. Although the structures of those have been reported so far, the resolutions are not sufficient for elucidation of the intrinsic structural features critical to the color tuning and ion pumping properties. Here we report the accurate crystallographic analysis of bR in the ground state. The influence of X-rays was suppressed by collecting the data under a low irradiation dose at 15 K. Consequently, individual atoms could be separately observed in the electron density map at better than 1.3 Å resolution. Residues from Thr5 to Ala233 were continuously constructed in the model. The twist of the retinal polyene was determined to be different from those in the previous models. Two conformations were observed for the proton release region. We discuss the meaning of these fine structural features.


Subject(s)
Bacteriorhodopsins/chemistry , Halobacterium salinarum/chemistry , Protons , Retinaldehyde/chemistry , Bacteriorhodopsins/genetics , Bacteriorhodopsins/isolation & purification , Bacteriorhodopsins/metabolism , Crystallography, X-Ray , Gene Expression , Halobacterium salinarum/metabolism , Halobacterium salinarum/radiation effects , Hydrogen Bonding , Ion Transport , Light , Light Signal Transduction , Models, Molecular , Protein Conformation , Retinaldehyde/metabolism
20.
FEBS Open Bio ; 8(8): 1312-1321, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30087834

ABSTRACT

Nascent polypeptide chains fold cotranslationally, but the atomic-level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate-length variants of the λ repressor N-terminal domain. Although the ranges of helical regions of the half-length variant were almost identical to those of the full-length protein, the relative orientations of these helices in the intermediate-length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. DATABASE: Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.

SELECTION OF CITATIONS
SEARCH DETAIL
...