Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Appl Microbiol ; 42(3): 275-283, 2019 May.
Article in English | MEDLINE | ID: mdl-30885535

ABSTRACT

Four Gram-negative, rod-shaped pectinolytic bacterial strains designated as 2M, 9M, DPMP599 and DPMP600 were subjected to polyphasic analyses that revealed their distinctiveness from the other Pectobacterium species. Strains 2M and 9M were isolated from Calla lily bulbs cultivated in Central Poland. DPMP599 and DPMP600 strains were isolated from Calla lily leaves from plants grown in Serbia. Phylogenetic analyses based on nine housekeeping genes (gapA, gyrA, icdA, pgi, proA, recA, recN, rpoA, and rpoS), as well as phylogeny based on the 381 most conserved universal proteins confirmed that Pectobacterium zantedeschiae strains were distantly related to the other Pectobacterium, and indicated Pectobacterium atrosepticum, Pectobacterium betavasculorum, Pectobacterium parmentieri and Pectobacterium wasabiae as the closest relatives. Moreover, the analysis revealed that Pectobacterium zantedeschiae strains are not akin to Pectobacterium aroidearum strains, which were likewise isolated from Calla lily. The genome sequencing of the strains 2M, 9M and DPMP600 and their comparison with whole genome sequences of other Pectobacterium type strains confirmed their distinctiveness and separate species status within the genus based on parameters of in silico DNA-DNA hybridization and average nucleotide identity (ANI) values. The MALDI-TOF MS proteomic profile supported the proposition of delineation of the P. zantedeschiae and additionally confirmed the individuality of the studied strains. Based on of all of these data, it is proposed that the strains 2M, 9M, DPMP599, and DPMP600 isolated from Calla lily, previously assigned as P. atrosepticum should be reclassified as Pectobacterium zantedeschiae sp. nov. with the strain 9MT (PCM2893=DSM105717=IFB9009) as the type strain.


Subject(s)
Pectobacterium/classification , Phylogeny , Plant Diseases/microbiology , Zantedeschia/microbiology , Bacterial Proteins/genetics , Computational Biology , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Essential/genetics , Genome, Bacterial/genetics , Pectobacterium/chemistry , Pectobacterium/genetics , Poland , Proteomics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Serbia , Species Specificity
2.
BMC Genomics ; 18(1): 868, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132313

ABSTRACT

BACKGROUND: Erwinia amylovora is generally considered to be a homogeneous species in terms of phenotypic and genetic features. However, strains show variation in their virulence, particularly on hosts with different susceptibility to fire blight. We applied the RNA-seq technique to elucidate transcriptome-level changes of the lowly virulent E. amylovora 650 strain during infection of shoots of susceptible (Idared) and resistant (Free Redstar) apple cultivars. RESULTS: The highest number of differentially expressed E. amylovora genes between the two apple genotypes was observed at 24 h after inoculation. Six days after inoculation, only a few bacterial genes were differentially expressed in the susceptible and resistant apple cultivars. The analysis of differentially expressed gene functions showed that generally, higher expression of genes related to stress response and defence against toxic compounds was observed in Free Redstar. Also in this cultivar, higher expression of flagellar genes (FlaI), which are recognized as PAMP (pathogen-associated molecular pattern) by the innate immune systems of plants, was noted. Additionally, several genes that have not yet been proven to play a role in the pathogenic abilities of E. amylovora were found to be differentially expressed in the two apple cultivars. CONCLUSIONS: This RNA-seq analysis generated a novel dataset describing the transcriptional response of the lowly virulent strain of E. amylovora in susceptible and resistant apple cultivar. Most genes were regulated in the same way in both apple cultivars, but there were also some cultivar-specific responses suggesting that the environment in Free Redstar is more stressful for bacteria what can be the reason of their inability to infect of this cultivar. Among genes with the highest fold change in expression between experimental combinations or with the highest transcript abundance, there are many genes without ascribed functions, which have never been tested for their role in pathogenicity. Overall, this study provides the first transcriptional profile by RNA-seq of E. amylovora during infection of a host plant and insights into the transcriptional response of this pathogen in the environments of susceptible and resistant apple plants.


Subject(s)
Disease Resistance , Erwinia amylovora/genetics , Erwinia amylovora/pathogenicity , Gene Expression Profiling , Malus/microbiology , Plant Diseases/microbiology , Plant Shoots/microbiology , Erwinia amylovora/physiology , Malus/immunology , Time Factors , Virulence
3.
Arch Microbiol ; 198(6): 531-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27002332

ABSTRACT

In a previous study (Mikicinski et al. in Eur J Plant Pathol, doi: 10.1007/s10658-015-0837-y , 2015), we described the characterization of novel strain 49M of Pseudomonas graminis, isolated from the phyllosphere of apple trees in Poland showing a good protective activity against fire blight on different organs of host plants. We now report investigations to clarify the basis for this activity. Strain 49M was found to produce siderophores on a medium containing complex CAS-Fe(3+) and HDTMA, but was not able to produce N-acyl homoserine lactones (AHLs). Moreover, it formed a biofilm on polystyrene and polyvinyl chloride (PVC) surfaces. Strain 49M gave a positive reaction in PCR with primers complementary to gacA, the regulatory gene influencing the production of several secondary metabolites including antibiotics. The genes prnD (encoding pyrrolnitrin), pltC, pltB (pyoluteorin), phlD (2,4-diacetyl-phloroglucinol) and phzC as well as phzD (and their homologs phzF and phzA encoding phenazine), described for antagonistic fluorescent pseudomonads, however, were not detected. Research into the biotic relationship between strain 49M and Erwinia amylovora strain Ea659 on five microbiological media showed that this strain clearly inhibited the growth of the pathogen on King's B and nutrient agar with glycerol media, to a very small extent on nutrient agar with sucrose, and not at all on Luria-Bertani agar. On medium 925, strain 49M even stimulated E. amylovora growth. The addition of ferric chloride to King's B resulted in the loss of its inhibitory ability. Testing the survival of 49M in vitro showed its resistance to drought, greater than that of E. amylovora.


Subject(s)
Antibiosis/physiology , Biological Control Agents/metabolism , Erwinia amylovora/growth & development , Plant Diseases/microbiology , Pseudomonas/growth & development , Acyl-Butyrolactones/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , DNA Primers , Erwinia amylovora/genetics , Malus/microbiology , Poland , Polystyrenes , Polyvinyl Chloride , Pseudomonas/genetics , Siderophores/metabolism
4.
Plant Physiol Biochem ; 63: 292-305, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23321023

ABSTRACT

In attached apple leaves, spot-inoculated with Erwinia amylovora, the phenotypic appearance of the hypersensitive response (HR) and the participation of ethylene, reactive oxygen species (ROS) and of vacuolar processing enzyme (VPE) (a plant caspase-1-like protease) were analysed. The HR in both the resistant and susceptible genotypes expressed a similar pattern of distinguishable micro HR lesions that progressed into confined macro HR lesions. The HR symptoms in apple were compared to those in non-host tobacco. The morphology of dead cells (protoplast shrinkage and retraction from cell wall) in apple leaves resembled necrotic programmed cell death (PCD). Lesion formation in both cv. Free Redstar (resistant) and cv. Idared (highly susceptible) was preceded by ROS accumulation and elevation of ethylene levels. Treatment of infected leaves with an inhibitor of ethylene synthesis led to a decrease of ethylene emission and suppression of lesion development in both cultivars. In the resistant but not in the susceptible apple cultivar an early and late increase in VPE gene expression was detected. This suggests that VPE might be an underlying component of the response to E. amylovora in resistant apple cultivars. The findings show that in the studied pathosystem the cell death during the HR proceeds through a signal transduction cascade in which ROS, ethylene and VPE pathways play a role.


Subject(s)
Erwinia amylovora/pathogenicity , Malus/microbiology , Plant Leaves/microbiology , Cysteine Endopeptidases/metabolism , Erwinia amylovora/metabolism , Ethylenes/metabolism , Malus/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...