Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol Evol ; 24(1): 19, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308224

ABSTRACT

BACKGROUND: Describing geographical variation in morphology of organisms in combination with data on genetic differentiation and biogeography can provide important information on how natural selection shapes such variation. Here we study genetic structure using ddRAD seq and wing shape variation using geometric morphometrics in 14 populations of the damselfly Lestes sponsa along its latitudinal range in Europe. RESULTS: The genetic analysis showed a significant, yet relatively weak population structure with high genetic heterozygosity and low inbreeding coefficients, indicating that neutral processes contributed very little to the observed wing shape differences. The genetic analysis also showed that some regions of the genome (about 10%) are putatively shaped by selection. The phylogenetic analysis showed that the Spanish and French populations were the ancestral ones with northern Swedish and Finnish populations being the most derived ones. We found that wing shape differed significantly among populations and showed a significant quadratic (but weak) relationship with latitude. This latitudinal relationship was largely attributed to allometric effects of wing size, but non-allometric variation also explained a portion of this relationship. However, wing shape showed no phylogenetic signal suggesting that lineage-specific variation did not contribute to the variation along the latitudinal gradient. In contrast, wing size, which is correlated with body size in L. sponsa, had a strong negative correlation with latitude. CONCLUSION: Our results suggest a relatively weak population structure among the sampled populations across Europe, but a clear differentiation between south and north populations. The observed geographic phenotypic variation in wing shape may have been affected by different local selection pressures or environmental effects.


Subject(s)
Odonata , Animals , Phylogeography , Phylogeny , Odonata/genetics , Europe , Biological Variation, Population
2.
J Evol Biol ; 29(7): 1394-405, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27062155

ABSTRACT

Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst-swim-mediating morphology in response to a habitat shift-related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well-known habitat shift from predatory fish lakes (fish lakes) to predatory fish-free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly-lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.


Subject(s)
Ecosystem , Odonata/anatomy & histology , Phenotype , Animals , Biological Evolution , Fishes , Predatory Behavior
3.
J Evol Biol ; 28(7): 1354-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26009809

ABSTRACT

Although changes in magnitude of single traits responding to selective agents have been studied intensively, little is known about selection shaping networks of traits and their patterns of covariation. However, this is central for our understanding of phenotypic evolution as traits are embedded in a multivariate environment with selection affecting a multitude of traits simultaneously rather than individually. Here, we investigate inter- and intraspecific patterns of trait integration (trait correlations) in the larval abdomen of dragonflies as a response to a change in predator selection. Species of the dragonfly genus Leucorrhinia underwent a larval habitat shift from predatory fish to predatory dragonfly-dominated lakes with an associated relaxation in selection pressure from fish predation. Our results indicate that the habitat-shift-induced relaxed selection pressure caused phenotypic integration of abdominal traits to be reduced. Intraspecific findings matched patterns comparing species from both habitats with higher abdominal integration in response to predatory fish. This higher integration is probably a result of faster burst swimming speed. The abdomen holds the necessary morphological machinery to successfully evade predatory fish via burst swimming. Hence, abdominal traits have to function in a tight coordinated manner, as maladaptive variation and consequently nonoptimal burst swimming would cause increased mortality. In predatory dragonfly-dominated lakes, no such strong link between burst swimming and mortality is present. Our findings highlight the importance of studying multivariate trait relationships as a response to selection for understanding patterns of phenotypic diversification.


Subject(s)
Abdomen , Odonata/anatomy & histology , Odonata/physiology , Predatory Behavior , Abdomen/anatomy & histology , Abdomen/physiology , Animals , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...