Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37629887

ABSTRACT

The sulfur curing system, peroxide curing system and their combinations were applied for the cross-linking of unfilled and carbon black-filled rubber formulations based on ethylene-propylenediene-monomer rubber. The results demonstrated that the type of curing system influenced the course and shape of curing isotherms. This resulted in the change of curing kinetics of rubber compounds. The cross-link density of materials cured with combined vulcanization systems was lower than that for vulcanizates cured with the peroxide or sulfur system. Good correlation between the cross-link density as well as the structure of the formed cross-links and physical-mechanical characteristics of the cured materials was established. Both filled and unfilled vulcanizates cured with combined vulcanization systems exhibited a higher tensile strength and elongation at break when compared to their equivalents vulcanized in the presence of the peroxide or sulfur curing system. It can be stated that by proper combination of vulcanization systems, it is possible to modify the tensile behavior of vulcanizates in a targeted manner. On the other side, dynamical-mechanical properties were found not be significantly influenced by the curing system composition.

2.
Polymers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236060

ABSTRACT

In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.

3.
Polymers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297901

ABSTRACT

Fertilizers play an essential role in agriculture due to the rising food demand. However, high input fertilizer concentration and the non-controlled leaching of nutrients cause an unwanted increase in reactive, unassimilated nitrogen and induce environmental pollution. This paper investigates the preparation and properties of slow-release fertilizer with fully biodegradable poly(3-hydroxybutyrate) coating that releases nitrogen gradually and is not a pollutant for soil. Nitrogen fertilizer (calcium ammonium nitrate) was pelletized with selected filler materials (poly(3-hydroxybutyrate), struvite, dried biomass). Pellets were coated with a solution of poly(3-hydroxybutyrate) in dioxolane that formed a high-quality and thin polymer coating. Coated pellets were tested in aqueous and soil environments. Some coated pellets showed excellent resistance even after 76 days in water, where only 20% of the ammonium nitrate was released. Pot experiments in Mitscherlich vegetation vessels monitored the effect of the application of coated fertilizers on the development and growth of maize and the dynamics of N release in the soil. We found that the use of our coated fertilizers in maize nutrition is a suitable way to supply nutrients to plants concerning their needs and that the poly(3-hydroxybutyrate) that was used for the coating does not adversely affect the growth of maize plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...