Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 374, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013423

ABSTRACT

Ancient brass (aurichalcum) was a valued commodity in the Antiquity, notably because of its gold-like appearance. After mastering brass fabrication using the cementation procedure in the first century BC in the Mediterranean, this material became widely used by the Romans for coins, jewellery and other artefacts. Because of its visual qualities, it is believed that since this period, brass played an important role in diplomatic and economic contacts with indigenous communities, notably Celtic and Germanic tribes north of Danube and west of Rhine. To test this hypothesis, we performed for the first time the advanced statistical multivariate analysis based on chemical composition and lead isotope systematics, coupled with informed typo-chronological categorisation, of a suite of late Iron Age and Early Roman period (first century BC - first century AD) brass and other copper-alloy artefacts from the territory of Bohemia. In order to to discuss their provenance, the results were compared to known contemporary sources of material. The new results for brass artefacts from this early phase of the massive occurrence of Roman aurichalcum in the Barbarian territories point to the ore deposits in the western Mediterranean or the Massif Central area in Gaul, consistent with historical events. These new findings underscore the great economic and political importance of the new and rich mineral resources in the Transalpine Gaul acquired due to Caesar's military campaigns.

2.
Environ Pollut ; 265(Pt B): 114949, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32563118

ABSTRACT

Cadmium (Cd) and its forms has recently been a focus of attention due to its toxic effects on human health and the environment. We evaluated the atmospheric deposition of Cd during three consecutive winter seasons (2009-2011) at 10 mountain-top locations in the Czech Republic along the borders with Poland, Germany, Austria and Slovakia. Cadmium concentrations of soluble and insoluble forms in both horizontal (rime) and vertical (snow) deposition were determined using sector-field ICP-MS. Across the sites, 94% of the total winter Cd deposition occurred in the soluble (environmentally available) Cd form. Mean concentrations of soluble Cd in rime were six times higher than in snow (398 vs. 66 ng L-1). Vertical deposition contributed as much as 41% to the total winter Cd input. Between-site variability in Cd deposition was large, ranging between 13 and 108 µg m-2 winter-1. Overall, Cd concentrations in winter deposition did not reach the drinking water limits and did not pose a direct threat for human health. Long-term trends (1996-2017) in winter Cd deposition were evaluated at six GEOMON sites (a monitoring network of small forested catchments). Since 1996, Cd input in winter atmospheric deposition decreased by 73-93%. Simultaneously, we found declines in between-site variability in winter Cd inputs. The highest recent winter Cd inputs were found at sites located in the northeast of the country. A north-south pollution gradient, which has frequently been mentioned in the literature, was not observed, with both northwestern sites and southern sites being among those with the lowest Cd pollution. Backward trajectories of the HYSPLIT model for fresh snow samples identified Poland and Germany as major transboundary Cd pollution sources for the Czech Republic.


Subject(s)
Cadmium , Environmental Monitoring , Austria , Czech Republic , Europe , Germany , Humans , Poland , Seasons , Slovakia
3.
Environ Pollut ; 218: 1135-1146, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27613315

ABSTRACT

Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ65Cu and δ66Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ65Cu and δ66Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ65Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ65Cu value of pollution sources (-1.17‰). The variability in δ65Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ66Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ66Zn value of pollution sources (-0.23‰). The variability in δ66Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe.


Subject(s)
Air Pollution , Copper , Snow/chemistry , Zinc , Copper/analysis , Copper/chemistry , Czech Republic , Environmental Monitoring , Europe , Ice , Isotopes/analysis , Zinc/analysis , Zinc/chemistry
4.
Environ Sci Technol ; 48(8): 4336-43, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24660842

ABSTRACT

Soils in polluted regions are generally regarded as a delayed, long-lasting source for Pb contamination of aquatic systems. Lead deposited on topsoil is slowly transported downward with particulate and colloidal organic matter, driven by infiltrating precipitation. Then, Pb is tightly retained in mineral soil. Lead export from catchments is extremely low and decoupled from the atmospheric input. We tested this hypothesis in 11 small catchments, differing in pollution levels. Input/ouput Pb fluxes were monitored for 14-15 years in an era of decreasing industrial Pb emission rates. Between 1996/1997 and 2010, Pb deposition fluxes decreased significantly, on average by 80%. At the beginning of the monitoring, Pb export constituted 2 to 58% of Pb input. At the end of the monitoring, Pb export constituted 2 to 95% of Pb input. Highly polluted sites in the northeast exported significantly more Pb than less polluted sites further south. The (206)Pb/(207)Pb isotope ratios of runoff (1.16) were identical to those of topsoil and present-day deposition, and different from mineral soil and bedrock. Lead isotope systematics and between-site flux comparisons indicated that a portion of the incoming Pb had a relatively short residence time in the catchments, on the order of decades.


Subject(s)
Atmosphere/chemistry , Environmental Pollution/analysis , Lead/analysis , Soil Pollutants/analysis , Air Pollutants/analysis , Czech Republic , Geography , Isotopes/analysis , Time Factors
5.
Sci Total Environ ; 439: 26-34, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23063635

ABSTRACT

Little is known about atmospheric input of beryllium (Be) into ecosystems, despite its highly toxic behavior. For three consecutive winters (2009-2011), we measured Be concentrations in horizontal deposition (rime) and vertical deposition (snow) at 10 remote mountain-top locations in the Czech Republic, Central Europe. Beryllium was determined both in filtered waters, and in HF digests of insoluble particles. Across the sites, soluble Be concentrations in rime were 7 times higher, compared to snow (6.1 vs. 0.9ng·L(-1)). Rime scavenged the pollution-rich lower segments of clouds. The lowest Be concentrations were detected in the soluble fraction of snow. Across the sites, 34% of total Be deposition occurred in the form of soluble (bioavailable) Be, the rest were insoluble particles. Beryllium fluxes decreased in the order: vertical dry deposition insoluble>vertical dry deposition soluble>horizontal deposition soluble>vertical wet deposition insoluble>vertical wet deposition soluble>horizontal deposition insoluble. The average contributions of these Be forms to total deposition were 56, 21, 8, 7, 5 and 3%, respectively. Sites in the northeast were more Be-polluted than the rest of the country with sources of pollution in industrial Silesia.


Subject(s)
Air Pollutants/analysis , Air , Beryllium/analysis , Environmental Monitoring/methods , Ice/analysis , Snow/chemistry , Air/analysis , Air/standards , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...