Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013862

ABSTRACT

As a secondary material, quarry fines are a valuable material to be reused for many purposes in civil engineering projects. The aggregate source depletion, especially the lack of high quality aggregates as expected in the future, as well as the demand for a carbon-neutral society and circular economy, also promotes the high-volume utilization of secondary materials such as quarry fines. The aim of this study is to do a feasibility assessment including a series of laboratory tests and analyses to evaluate the properties of quarry fine materials to determine if this type of material could be qualified as pavement construction material in high volume. The gradation information obtained from both sieving and hydrometer tests indicates the frost susceptibility of unstabilized quarry fines, therefore frost heave tests were performed and which further suggest the necessity of stabilization to improve its properties for pavement applications, especially in structural layers such as base, subbase, or filter layers. Some other general information and properties of unbound quarry fines, especially regarding their validity for application in pavement engineering are also investigated and discussed.

2.
J Mech Behav Biomed Mater ; 65: 42-52, 2017 01.
Article in English | MEDLINE | ID: mdl-27552598

ABSTRACT

Collagen networks provide the main structural component of most tissues and represent an important ingredient for bio-mimetic materials for bio-medical applications. Here we study the mechanical properties of stiff collagen networks derived from three different echinoderms and show that they exhibit non-linear stiffening followed by brittle fracture. The disordered nature of the network leads to strong sample-to-sample fluctuations in elasticity and fracture strength. We perform numerical simulations of a three dimensional model for the deformation of a cross-linked elastic fibril network which is able to reproduce the macroscopic features of the experimental results and provide insights into the internal mechanics of stiff collagen networks. Our numerical model provides an avenue for the design of collagen membranes with tunable mechanical properties.


Subject(s)
Collagen/physiology , Echinodermata/physiology , Animals , Biomimetic Materials , Elasticity , Extracellular Matrix , Models, Theoretical , Stress, Mechanical
3.
Phys Rev E ; 94(2-1): 023002, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627383

ABSTRACT

Materials flow-under creep or constant loads-and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

4.
Phys Rev Lett ; 114(20): 205501, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047240

ABSTRACT

We study the interaction of two collinear cracks in polymer sheets slowly growing towards each other, when submitted to uniaxial stress at a constant loading velocity. Depending on the sample's geometry-specifically, the initial distances d between the two cracks' axes and L between the cracks' tips-we observe different crack paths with, in particular, a regime where the cracks repel each other prior to being attracted. We show that the angle θ characterizing the amplitude of the repulsion-and specifically its evolution with d-depends strongly on the microscopic behavior of the material. Our results highlight the crucial role of the fracture process zone. At interaction distances larger than the process zone size, crack repulsion is controlled by the microscopic shape of the process zone tip, while at shorter distances, the overall plastic process zone screens the repulsion interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...