Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 42(12): 3040-3053, 2020 12.
Article in English | MEDLINE | ID: mdl-31150338

ABSTRACT

Deep Neural Networks (DNNs) have demonstrated exceptional performance on most recognition tasks such as image classification and segmentation. However, they have also been shown to be vulnerable to adversarial examples. This phenomenon has recently attracted a lot of attention but it has not been extensively studied on multiple, large-scale datasets and structured prediction tasks such as semantic segmentation which often require more specialised networks with additional components such as CRFs, dilated convolutions, skip-connections and multiscale processing. In this paper, we present what to our knowledge is the first rigorous evaluation of adversarial attacks on modern semantic segmentation models, using two large-scale datasets. We analyse the effect of different network architectures, model capacity and multiscale processing, and show that many observations made on the task of classification do not always transfer to this more complex task. Furthermore, we show how mean-field inference in deep structured models, multiscale processing (and more generally, input transformations) naturally implement recently proposed adversarial defenses. Our observations will aid future efforts in understanding and defending against adversarial examples. Moreover, in the shorter term, we show how to effectively benchmark robustness and show which segmentation models should currently be preferred in safety-critical applications due to their inherent robustness.

2.
IEEE Trans Pattern Anal Mach Intell ; 42(8): 1996-2010, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30872223

ABSTRACT

Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given an initial closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We further extend this model by so-called trimaps which serve as an input to alpha-matting algorithms to allow truly seamless compositing. To this end, we leverage local classifiers attached to the roto-curves to define a confidence measure that is well-suited to define trimaps with adaptive band-widths. The resulting trimaps are parametric, temporally consistent and remain fully editable by the artist. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling.

SELECTION OF CITATIONS
SEARCH DETAIL