Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Astrobiology ; 23(11): 1153-1164, 2023 11.
Article in English | MEDLINE | ID: mdl-37279037

ABSTRACT

Ocean Worlds beneath thick ice covers in our solar system, as well as subglacial lakes on Earth, may harbor biological systems. In both cases, thick ice covers (>100 s of meters) present significant barriers to access. Melt probes are emerging as tools for reaching and sampling these realms due to their small logistical footprint, ability to transport payloads, and ease of cleaning in the field. On Earth, glaciers are immured with various abundances of microorganisms and debris. The potential for bioloads to accumulate around and be dragged by a probe during descent has not previously been investigated. Due to the pristine nature of these environments, minimizing and understanding the risk of forward contamination and considering the potential of melt probes to act as instrument-induced special regions are essential. In this study, we examined the effect that two engineering descent strategies for melt probes have on the dragging of bioloads. We also tested the ability of a field cleaning protocol to rid a common contaminant, Bacillus. These tests were conducted in a synthetic ice block immured with bioloads using the Ice Diver melt probe. Our data suggest minimal dragging of bioloads by melt probes, but conclude that modifications for further minimization and use in special regions should be made.


Subject(s)
Ice Cover , Lakes , Freezing , Oceans and Seas
2.
Front Microbiol ; 14: 1156033, 2023.
Article in English | MEDLINE | ID: mdl-37250028

ABSTRACT

The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.

4.
Microbiol Resour Announc ; 10(22): e0114120, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34080902

ABSTRACT

We report the sequencing, assembly, and draft genome of Shewanella sp. strain BF02_Schw. The assembly contains 5,304,243 bp, with a GC content of 41.43%.

6.
Environ Microbiol ; 21(7): 2290-2306, 2019 07.
Article in English | MEDLINE | ID: mdl-30927377

ABSTRACT

Antarctic subglacial environments host microbial ecosystems and are proving to be geochemically and biologically diverse. The Taylor Glacier, Antarctica, periodically expels iron-rich brine through a conduit sourced from a deep subglacial aquifer, creating a dramatic red surface feature known as Blood Falls. We used Illumina MiSeq sequencing to describe the core microbiome of this subglacial brine and identified previously undetected but abundant groups including the candidate bacterial phylum Atribacteria and archaeal phylum Pacearchaeota. Our work represents the first microbial characterization of samples collected from within a glacier using a melt probe, and the only Antarctic subglacial aquatic environment that, to date, has been sampled twice. A comparative analysis showed the brine community to be stable at the operational taxonomic unit level of 99% identity over a decade. Higher resolution sequencing enabled deconvolution of the microbiome of subglacial brine from mixtures of materials collected at the glacier surface. Diversity patterns between this brine and samples from the surrounding landscape provide insight into the hydrological connectivity of subglacial fluids to the surface polar desert environment. Understanding subice brines collected on the surfaces of thick ice covers has implications for analyses of expelled materials that may be sampled on icy extraterrestrial worlds.


Subject(s)
Archaea/classification , Bacteria/classification , Ice Cover/microbiology , Antarctic Regions , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Ecosystem , High-Throughput Nucleotide Sequencing , Ice Cover/chemistry , Microbiota , RNA, Ribosomal, 16S/genetics , Salts/analysis
7.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29444218

ABSTRACT

Antarctic subice environments are diverse, underexplored microbial habitats. Here, we describe the ecophysiology and annotated genome of a Marinobacter strain isolated from a cold, saline, iron-rich subglacial outflow of the Taylor Glacier, Antarctica. This strain (BF04_CF4) grows fastest at neutral pH (range 6-10), is psychrophilic (range: 0°C-20°C), moderately halophilic (range: 0.8%-15% NaCl) and hosts genes encoding potential low temperature and high salt adaptations. The predicted proteome suggests it utilizes fewer charged amino acids than a mesophilic Marinobacter strain. BF04_CF4 has increased concentrations of membrane unsaturated fatty acids including palmitoleic (33%) and oleic (27.5%) acids that may help maintain cell membrane fluidity at low temperatures. The genome encodes proteins for compatible solute biosynthesis and transport, which are known to be important for growth in saline environments. Physiological verification of predicted metabolic functions demonstrate BF04_CF4 is capable of denitrification and may facilitate iron oxidation. Our data indicate that strain BF04_CF4 represents a new Marinobacter species, Marinobacter gelidimuriae sp. nov., that appears well suited for the subglacial environment it was isolated from. Marinobacter species have been isolated from other cold, saline environments in the McMurdo Dry Valleys and permanently cold environments globally suggesting that this lineage is cosmopolitan and ecologically relevant in icy brines.


Subject(s)
Marinobacter/genetics , Sodium Chloride/metabolism , Antarctic Regions , Base Composition , DNA, Bacterial/genetics , Fatty Acids/metabolism , Genomics , Ice Cover/microbiology , Marinobacter/classification , Marinobacter/isolation & purification , Marinobacter/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Salts/metabolism , Sequence Analysis, DNA
8.
Front Microbiol ; 7: 1705, 2016.
Article in English | MEDLINE | ID: mdl-27833599

ABSTRACT

Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW water column. Heterotrophic metabolisms utilizing acetate and formate as electron donors yielded less energy than chemolithotrophic metabolisms when calculated in terms of energy density, which supports experimental results that showed chemoautotrophic activity in excess of heterotrophic activity. The microbial communities of subglacial lake ecosystems provide important natural laboratories to study the physiological and biogeochemical behavior of microorganisms inhabiting cold, dark environments.

9.
Nat Rev Microbiol ; 13(11): 677-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26344407

ABSTRACT

The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.


Subject(s)
Ecosystem , Ice Cover/microbiology , Water Microbiology , Genome, Bacterial
10.
Front Microbiol ; 5: 594, 2014.
Article in English | MEDLINE | ID: mdl-25477865

ABSTRACT

Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.

11.
Astrobiology ; 14(11): 887-968, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25401393

ABSTRACT

A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.


Subject(s)
Exobiology , Mars , Space Flight , Bacteria/cytology , Bacteria/metabolism , Cell Division , Cold Temperature , Energy Metabolism , Extraterrestrial Environment , Fungi/cytology , Fungi/metabolism , Geography , Humans , Ice , Microbial Viability , Oxygen , Space Flight/instrumentation , Spacecraft , Thermodynamics , Ultraviolet Rays , Water , Yeasts/cytology , Yeasts/metabolism
12.
Nature ; 512(7514): 310-3, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25143114

ABSTRACT

Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.


Subject(s)
Aquatic Organisms/isolation & purification , Ecosystem , Ice Cover , Lakes/microbiology , Antarctic Regions , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon/metabolism , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Ice Cover/chemistry , Lakes/chemistry , Oceans and Seas , Phylogeny
13.
Science ; 324(5925): 397-400, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19372431

ABSTRACT

An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.


Subject(s)
Bacteria/metabolism , Ecosystem , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Ice Cover , Seawater/microbiology , Sulfur/metabolism , Anaerobiosis , Antarctic Regions , Autotrophic Processes , Bacteria/growth & development , Heterotrophic Processes , Metabolic Networks and Pathways , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Oxygen/metabolism , Oxygen Isotopes/analysis , Phylogeny , Seawater/chemistry , Sulfates/metabolism , Sulfites/metabolism
14.
Appl Environ Microbiol ; 73(12): 4029-39, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17468282

ABSTRACT

Blood Falls is the surface manifestation of brine released from below the Taylor Glacier, McMurdo Dry Valleys, Antarctica. Geochemical analyses of Blood Falls show that this brine is of a marine origin. The discovery that 74% of clones and isolates from Blood Falls share high 16S rRNA gene sequence homology with phylotypes from marine systems supports this contention. The bacterial 16S rRNA gene clone library was dominated by a phylotype that had 99% sequence identity with Thiomicrospira arctica (46% of the library), a psychrophilic marine autotrophic sulfur oxidizer. The remainder of the library contained phylotypes related to the classes Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria and the division Bacteroidetes and included clones whose closest cultured relatives metabolize iron and sulfur compounds. These findings are consistent with the high iron and sulfate concentrations detected in Blood Falls, which are likely due to the interactions of the subglacial brine with the underlying iron-rich bedrock. Our results, together with previous reports, suggest that the brine below the Taylor Glacier hosts a viable ecosystem with microorganisms capable of growth, supported by chemical energy present in reduced iron and sulfur compounds. The metabolic and phylogenetic structure of this subglacial microbial assemblage appears to be controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem.


Subject(s)
Bacteria/genetics , Biodiversity , Ice Cover/microbiology , Phylogeny , Antarctic Regions , Base Sequence , Cluster Analysis , DNA Primers/genetics , Gene Library , Ice Cover/chemistry , Iron/analysis , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfates/analysis
15.
Appl Environ Microbiol ; 69(6): 3311-6, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788731

ABSTRACT

We isolated a methanogen from deep in the sediments of the Nankai Trough off the eastern coast of Japan. At the sampling site, the water was 950 m deep and the sediment core was collected at 247 m below the sediment surface. The isolated methanogen was named Nankai-1. Cells of Nankai-1 were nonmotile and highly irregular coccoids (average diameter, 0.8 to 2 micro m) and grew with hydrogen or formate as a catabolic substrate. Cells required acetate as a carbon source. Yeast extract and peptones were not required but increased the growth rate. The cells were mesophilic, growing most rapidly at 45 degrees C (no growth at /=55 degrees C). Cells grew with a maximum specific growth rate of 2.43 day(-1) at 45 degrees C. Cells grew at pH values between 5.0 and 8.7 but did not grow at pH 4.7 or 9.0. Strain Nankai-1 grew in a wide range of salinities, from 0.1 to 1.5 M Na(+). The described phenotypic characteristics of this novel isolate were consistent with the in situ environment of the Nankai Trough. This is the first report of a methanogenic isolate from methane hydrate-bearing sediments. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is most closely related to Methanoculleus marisnigri (99.1% sequence similarity), but DNA hybridization experiments indicated a DNA sequence similarity of only 49%. Strain Nankai-1 was also found to be phenotypically similar to M. marisnigri, but two major phenotypic differences were found: strain Nankai-1 does not require peptones, and it grows fastest at a much higher temperature. We propose a new species, Methanoculleus submarinus, with strain Nankai-1 as the type strain.


Subject(s)
Euryarchaeota/classification , Euryarchaeota/genetics , Geologic Sediments/microbiology , Methanomicrobiaceae/classification , Methanomicrobiaceae/genetics , Seawater/microbiology , Culture Media , DNA, Archaeal/analysis , DNA, Ribosomal/analysis , Euryarchaeota/growth & development , Euryarchaeota/isolation & purification , Methane/metabolism , Methanomicrobiaceae/growth & development , Methanomicrobiaceae/isolation & purification , Microscopy, Electron , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...