Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 20(1): 571, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296163

ABSTRACT

BACKGROUND: RNA-Seq is currently the most widely used tool to analyze whole-transcriptome profiles. There are numerous commercial kits available to facilitate preparing RNA-Seq libraries; however, it is still not clear how some of these kits perform in terms of: 1) ribosomal RNA removal; 2) read coverage or recovery of exonic vs. intronic sequences; 3) identification of differentially expressed genes (DEGs); and 4) detection of long non-coding RNA (lncRNA). In RNA-Seq analysis, understanding the strengths and limitations of commonly used RNA-Seq library preparation protocols is important, as this technology remains costly and time-consuming. RESULTS: In this study, we present a comprehensive evaluation of four RNA-Seq kits. We used three standard input protocols: Illumina TruSeq Stranded Total RNA and mRNA kits, a modified NuGEN Ovation v2 kit, and the TaKaRa SMARTer Ultra Low RNA Kit v3. Our evaluation of these kits included quality control measures such as overall reproducibility, 5' and 3' end-bias, and the identification of DEGs, lncRNAs, and alternatively spliced transcripts. Overall, we found that the two Illumina kits were most similar in terms of recovering DEGs, and the Illumina, modified NuGEN, and TaKaRa kits allowed identification of a similar set of DEGs. However, we also discovered that the Illumina, NuGEN and TaKaRa kits each enriched for different sets of genes. CONCLUSIONS: At the manufacturers' recommended input RNA levels, all the RNA-Seq library preparation protocols evaluated were suitable for distinguishing between experimental groups, and the TruSeq Stranded mRNA kit was universally applicable to studies focusing on protein-coding gene profiles. The TruSeq protocols tended to capture genes with higher expression and GC content, whereas the modified NuGEN protocol tended to capture longer genes. The SMARTer Ultra Low RNA Kit may be a good choice at the low RNA input level, although it was inferior to the TruSeq mRNA kit at standard input level in terms of rRNA removal, exonic mapping rates and recovered DEGs. Therefore, the choice of RNA-Seq library preparation kit can profoundly affect data outcomes. Consequently, it is a pivotal parameter to consider when designing an RNA-Seq experiment.


Subject(s)
Sequence Analysis, RNA/methods , Data Analysis , Gene Expression Profiling , RNA, Messenger/genetics , Reference Standards , Sequence Analysis, RNA/standards
2.
Cancer Prev Res (Phila) ; 6(7): 675-85, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23682071

ABSTRACT

The ultraviolet B (UVB) component of sunlight, which causes DNA damage and inflammation, is the major cause of nonmelanoma skin cancer (NMSC), the most prevalent of all cancers. Nonsteroidal anti-inflammatory drugs (NSAID) and coxibs have been shown to be effective chemoprevention agents in multiple preclinical trials, including NMSC, colon, and urinary bladder cancer. NSAIDs, however, cause gastrointestinal irritation, which led to the recent development of nitric oxide (NO) derivatives that may partially ameliorate this toxicity. This study compared the efficacy of several NSAIDs and NO-NSAIDs on UV-induced NMSC in SKH-1 hairless mice and determined whether various short-term biomarkers were predictive of long-term tumor outcome with these agents. Naproxen at 100 (P = 0.05) and 400 ppm (P < 0.01) in the diet reduced tumor multiplicity by 26% and 63%, respectively. The NO-naproxen at slightly lower molar doses shows similar activities. Aspirin at 60 or 750 ppm in the diet reduced tumor multiplicity by 19% and 50%, whereas the equivalent doses (108 and 1,350 ppm) were slightly less effective. Sulindac at 25 and 150 ppm in the diet, doses far below the human equivalent dose was the most potent NSAID with reductions of 50% and 94%, respectively. In testing short-term biomarkers, we found that agents that reduce UV-induced prostaglandin E2 synthesis and/or inhibit UV-induced keratinocyte proliferation yielded long-term tumor efficacy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biomarkers, Tumor/analysis , Cell Proliferation/drug effects , Dinoprostone/metabolism , Keratinocytes/pathology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Aspirin/pharmacology , Blotting, Western , Cell Proliferation/radiation effects , Cells, Cultured , Female , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Mice , Mice, Hairless , Naproxen/pharmacology , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Sulindac/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...