Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Oncogene ; 36(47): 6605-6616, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28783171

ABSTRACT

Human hepatocellular carcinomas (HCCs) expressing the biliary/hepatic progenitor cell marker keratin 19 (K19) have been linked with a poor prognosis and exhibit an increase in platelet-derived growth factor receptor α (PDGFRα) and laminin beta 1 (LAMB1) expression. PDGFRα has been reported to induce de novo synthesis of LAMB1 protein in a Sjogren syndrome antigen B (La/SSB)-dependent manner in a murine metastasis model. However, the role of this cascade in human HCC remains unclear. This study focused on the functional role of the PDGFRα-La/SSB-LAMB1 pathway and its molecular link to K19 expression in human HCC. In surgical HCC specimens from a cohort of 136 patients, PDGFRα expression correlated with K19 expression, microvascular invasion and metastatic spread. In addition, PDGFRα expression in pre-operative needle biopsy specimens predicted poor overall survival during a 5-year follow-up period. Consecutive histological staining demonstrated that the signaling components of the PDGFRα-La/SSB-LAMB1 pathway were strongly expressed at the invasive front. K19-positive HCC cells displayed high levels of α2ß1 integrin (ITG) receptor, both in vitro and in vivo. In vitro activation of PDGFRα signaling triggered the translocation of nuclear La/SSB into the cytoplasm, enhanced the protein synthesis of LAMB1 by activating its internal ribosome entry site, which in turn led to increased secretion of laminin-111. This effect was abrogated by the PDGFRα-specific inhibitor crenolanib. Importantly LAMB1 stimulated ITG-dependent focal adhesion kinase/Src proto-oncogene non-receptor tyrosine kinase signaling. It also promoted the ITG-specific downstream target Rho-associated coiled-coil containing protein kinase 2, induced K19 expression in an autocrine manner, invadopodia formation and cell invasion. Finally, we showed that the knockdown of LAMB1 or K19 in subcutaneous xenograft mouse models resulted in significant loss of cells invading the surrounding stromal tissue and reduced HepG2 colonization into lung and liver after tail vein injection. The PDGFRα-LAMB1 pathway supports tumor progression at the invasive front of human HCC through K19 expression.


Subject(s)
Carcinoma, Hepatocellular/pathology , Keratin-19/metabolism , Laminin/metabolism , Liver Neoplasms/pathology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Animals , Autoantigens/metabolism , Benzimidazoles/pharmacology , Biomarkers, Tumor/metabolism , Biopsy, Needle , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/surgery , Cohort Studies , Disease Progression , Female , Follow-Up Studies , Gene Knockdown Techniques , Hep G2 Cells , Humans , Immunohistochemistry , Integrin alpha2beta1/metabolism , Keratin-19/genetics , Laminin/genetics , Liver Neoplasms/mortality , Liver Neoplasms/surgery , Mice , Neoplasm Invasiveness , Piperidines/pharmacology , Proto-Oncogene Mas , Proto-Oncogenes , RNA, Small Interfering , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/genetics , Ribonucleoproteins/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor Assays , rho-Associated Kinases/metabolism , SS-B Antigen
2.
Br J Cancer ; 108(3): 570-8, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23299527

ABSTRACT

BACKGROUND: As metastasis is the prime cause of death from malignancies, there is vibrant interest to discover options for the management of the different mechanistic steps of tumour spreading. Some approved pharmaceuticals exhibit activities against diseases they have not been developed for. In order to discover such activities that might attenuate lymph node metastasis, we investigated 225 drugs, which are approved by the US Food and Drug Administration. METHODS: A three-dimensional cell co-culture assay was utilised measuring tumour cell-induced disintegrations of the lymphendothelial wall through which tumour emboli can intravasate as a limiting step in lymph node metastasis of ductal breast cancer. The disintegrated areas in the lymphendothelial cell (LEC) monolayers were induced by 12(S)-HETE, which is secreted by MCF-7 tumour cell spheroids, and are called 'circular chemorepellent induced defects' (CCIDs). The putative mechanisms by which active drugs prevented the formation of entry gates were investigated by western blotting, NF-κB activity assay and by the determination of 12(S)-HETE synthesis. RESULTS: Acetohexamide, nifedipin, isoxsuprine and proadifen dose dependently inhibited the formation of CCIDs in LEC monolayers and inhibited markers of epithelial-to-mesenchymal-transition and migration. The migration of LECs is a prerequisite of CCID formation, and these drugs either repressed paxillin levels or the activities of myosin light chain 2, or myosin-binding subunit of myosin phosphatase. Isoxsuprine inhibited all three migration markers, and isoxsuprine and acetohexamide suppressed the synthesis of 12(S)-HETE, whereas proadifen and nifedipin inhibited NF-κB activation. Both the signalling pathways independently cause CCID formation. CONCLUSION: The targeting of different mechanisms was most likely the reason for synergistic effects of different drug combinations on the inhibition of CCID formation. Furthermore, the treatment with drug combinations allowed also a several-fold reduction in drug concentrations. These results encourage further screening of approved drugs and their in vivo testing.


Subject(s)
Acetohexamide/pharmacology , Breast Neoplasms/drug therapy , Endothelium, Lymphatic/drug effects , Isoxsuprine/pharmacology , Lymphatic Vessels/drug effects , Nifedipine/pharmacology , Proadifen/pharmacology , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Antineoplastic Combined Chemotherapy Protocols , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Cell Adhesion/drug effects , Cell Movement , Chemotaxis/drug effects , Coculture Techniques , Drug Synergism , Endothelium, Lymphatic/cytology , Endothelium, Lymphatic/metabolism , Enzyme Inhibitors/pharmacology , Female , Humans , Hypoglycemic Agents/pharmacology , Lymphatic Metastasis , Lymphatic Vessels/blood supply , Lymphatic Vessels/pathology , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Spheroids, Cellular/metabolism , Tumor Cells, Cultured , Vasodilator Agents/pharmacology
3.
Br J Cancer ; 108(3): 564-9, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23093227

ABSTRACT

BACKGROUND: Many cancers spread through lymphatic routes, and mechanistic insights of tumour intravasation into the lymphatic vasculature and targets for intervention are limited. The major emphasis of research focuses currently on the molecular biology of tumour cells, while still little is known regarding the contribution of lymphatics. METHODS: Breast cancer cell spheroids attached to lymphendothelial cell (LEC) monolayers were used to investigate the process of intravasation by measuring the areas of 'circular chemorepellent-induced defects' (CCID), which can be considered as entry gates for bulky tumour intravasation. Aspects of tumour cell intravasation were furthermore studied by adhesion assay, and siRNA-mediated knockdown of intracellular adhesion molecule-1 (ICAM-1). Replacing cancer spheroids with the CCID-triggering compound 12(S)-hydroxyeicosatetraenoic acid (HETE) facilitated western blot analyses of Bay11-7082- and baicalein-treated LECs. RESULTS: Binding of LECs to MCF-7 spheroids, which is a prerequisite for CCID formation, was mediated by ICAM-1 expression, and this depended on NF-κB and correlated with the expression of the prometastatic factor S100A4. Simultaneous inhibition of NF-κB with Bay11-7082 and of arachidonate lipoxygenase (ALOX)-15 with baicalein prevented CCID formation additively. CONCLUSION: Two mechanisms contribute to CCID formation: ALOX15 via the generation of 12(S)-HETE by MCF-7 cells, which induces directional migration of LECs, and ICAM-1 in LECs under control of NF-κB, which facilitates adhesion of MCF-7 cells to LECs.


Subject(s)
Breast Neoplasms/drug therapy , Cell Adhesion/drug effects , Endothelium, Lymphatic/drug effects , Intercellular Adhesion Molecule-1/chemistry , NF-kappa B/antagonists & inhibitors , Nitriles/pharmacology , Spheroids, Cellular/drug effects , Sulfones/pharmacology , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Chemotaxis/drug effects , Endothelium, Lymphatic/cytology , Endothelium, Lymphatic/metabolism , Female , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
4.
Br J Cancer ; 105(2): 263-71, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21629247

ABSTRACT

BACKGROUND: The intravasation of breast cancer into the lymphendothelium is an early step of metastasis. Little is known about the mechanisms of bulky cancer invasion into lymph ducts. METHODS: To particularly address this issue, we developed a 3-dimensional co-culture model involving MCF-7 breast cancer cell spheroids and telomerase-immortalised human lymphendothelial cell (LEC) monolayers, which resembles intravasation in vivo and correlated the malignant phenotype with specific protein expression of LECs. RESULTS: We show that tumour spheroids generate 'circular chemorepellent-induced defects' (CCID) in LEC monolayers through retraction of LECs, which was induced by 12(S)-hydroxyeicosatetraenoic acid (HETE) secreted by MCF-7 spheroids. This 12(S)-HETE-regulated retraction of LECs during intravasation particularly allowed us to investigate the key regulators involved in the motility and plasticity of LECs. In all, 12(S)-HETE induced pro-metastatic protein expression patterns and showed NF-κB-dependent up-regulation of the mesenchymal marker protein S100A4 and of transcriptional repressor ZEB1 concomittant with down-regulation of the endothelial adherence junction component VE-cadherin. This was in accordance with ∼50% attenuation of CCID formation by treatment of cells with 10 µM Bay11-7082. Notably, 12(S)-HETE-induced VE-cadherin repression was regulated by either NF-κB or by ZEB1 since ZEB1 siRNA knockdown abrogated not only 12(S)-HETE-mediated VE-cadherin repression but inhibited VE-cadherin expression in general. INTERPRETATION: These data suggest an endothelial to mesenchymal transition-like process of LECs, which induces single cell motility during endothelial transmigration of breast carcinoma cells. In conclusion, this study demonstrates that the 12(S)-HETE-induced intravasation of MCF-7 spheroids through LECs require an NF-κB-dependent process of LECs triggering the disintegration of cell-cell contacts, migration, and the generation of CCID.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Breast Neoplasms/pathology , Carcinoma/pathology , Cell Transdifferentiation/drug effects , Endothelial Cells/drug effects , NF-kappa B/physiology , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Carcinoma/metabolism , Cell Line, Transformed , Cell Movement/drug effects , Coculture Techniques , Endothelial Cells/physiology , Female , Humans , Mesoderm/drug effects , Mesoderm/physiology , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Neoplasm Invasiveness , Nitriles/pharmacology , Signal Transduction/drug effects , Sulfones/pharmacology , Tumor Cells, Cultured
5.
Exp Cell Res ; 316(19): 3172-81, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20849845

ABSTRACT

Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15weeks (~100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133(+) CD44(-) phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear ß-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133(+) cells). These resistance phenomena, in turn, accentuate the malignant phenotype.


Subject(s)
Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , AC133 Antigen , Antigens, CD/metabolism , Azacitidine/pharmacology , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media, Serum-Free/pharmacology , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Epithelium/drug effects , Epithelium/pathology , Glycoproteins/metabolism , Humans , Hyaluronan Receptors/metabolism , Inhibitory Concentration 50 , Kinetics , Mesoderm/drug effects , Mesoderm/pathology , Peptides/metabolism , Time Factors , beta Catenin/metabolism
6.
Br J Cancer ; 102(9): 1361-70, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20424615

ABSTRACT

BACKGROUND: Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups. METHODS: Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by (14)C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers. RESULTS: In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21(Cip/Waf) and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread. CONCLUSION: These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Gallic Acid/analogs & derivatives , HL-60 Cells/drug effects , Stilbenes/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Division/drug effects , Cell Line, Tumor , Coloring Agents , Fibroblasts/cytology , Fibroblasts/drug effects , Flow Cytometry , Gallic Acid/pharmacology , Gap Junctions/drug effects , Gap Junctions/physiology , HL-60 Cells/cytology , Humans , Lung/cytology , Lung/drug effects , Signal Transduction/drug effects
7.
Oncogene ; 28(45): 4022-33, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19718050

ABSTRACT

The tumor-stroma crosstalk is a dynamic process fundamental in tumor development. In hepatocellular carcinoma (HCC), the progression of malignant hepatocytes frequently depends on transforming growth factor (TGF)-beta provided by stromal cells. TGF-beta induces an epithelial to mesenchymal transition (EMT) of oncogenic Ras-transformed hepatocytes and an upregulation of platelet-derived growth factor (PDGF) signaling. To analyse the influence of the hepatic tumor-stroma crosstalk onto tumor growth and progression, we co-injected malignant hepatocytes and myofibroblasts (MFBs). For this, we either used in vitro-activated p19(ARF) MFBs or in vivo-activated MFBs derived from physiologically inflamed livers of Mdr2/p19(ARF) double-null mice. We show that co-transplantation of MFBs with Ras-transformed hepatocytes strongly enhances tumor growth. Genetic interference with the PDGF signaling decreases tumor cell growth and maintains plasma membrane-located E-cadherin and beta-catenin at the tumor-host border, indicating a blockade of hepatocellular EMT. We further generated a collagen gel-based three dimensional HCC model in vitro to monitor the MFB-induced invasion of micro-organoid HCC spheroids. This invasion was diminished after inhibition of TGF-beta or PDGF signaling. These data suggest that the TGF-beta/PDGF axis is crucial during hepatic tumor-stroma crosstalk, regulating both tumor growth and cancer progression.


Subject(s)
Cell Communication/physiology , Cell Transformation, Neoplastic/pathology , Liver Neoplasms, Experimental/pathology , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Immunohistochemistry , Liver Neoplasms, Experimental/metabolism , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Platelet-Derived Growth Factor/metabolism , Transforming Growth Factor beta/metabolism
8.
Oncogene ; 28(5): 638-50, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19015638

ABSTRACT

In human hepatocellular carcinoma (HCC), epithelial to mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. We employed a model of EMT based on immortalized p19(ARF) null hepatocytes (MIM), which display tumor growth upon expression of oncogenic Ras and undergo EMT through the synergism of Ras and transforming growth factor (TGF)-beta. Here, we show that the interleukin-related protein interleukin-like EMT inducer (ILEI), a novel EMT-, tumor- and metastasis-inducing protein, cooperates with oncogenic Ras to cause TGF-beta-independent EMT. Ras-transformed MIM hepatocytes overexpressing ILEI showed cytoplasmic E-cadherin, loss of ZO-1 and induction of alpha-smooth muscle actin as well as platelet-derived growth factor (PDGF)/PDGF-R isoforms. As shown by dominant-negative PDGF-R expression in these cells, ILEI-induced PDGF signaling was required for enhanced cell migration, nuclear accumulation of beta-catenin, nuclear pY-Stat3 and accelerated growth of lung metastases. In MIM hepatocytes expressing the Ras mutant V12-C40, ILEI collaborated with PI3K signaling resulting in tumor formation without EMT. Clinically, human HCC samples showed granular or cytoplasmic localization of ILEI correlating with well and poorly differentiated tumors, respectively. In conclusion, these data indicate that ILEI requires cooperation with oncogenic Ras to govern hepatocellular EMT through mechanisms involving PDGF-R/beta-catenin and PDGF-R/Stat3 signaling.


Subject(s)
Carcinoma/genetics , Cell Transformation, Neoplastic/genetics , Cytokines/physiology , Genes, ras/physiology , Hepatocytes/pathology , Liver Neoplasms/genetics , Neoplasm Proteins/physiology , Animals , Carcinoma/pathology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genes, ras/genetics , Hepatocytes/metabolism , Humans , Liver Neoplasms/pathology , Male , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mice, SCID , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptors, Platelet-Derived Growth Factor/physiology , STAT3 Transcription Factor/physiology , Tissue Distribution , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology , beta Catenin/physiology
9.
Br J Cancer ; 99(1): 151-9, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18594539

ABSTRACT

To enable detailed analyses of cell interactions in tumour development, new epithelial and mesenchymal cell lines were established from human hepatocellular carcinoma by spontaneous outgrowth in culture. We obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)-, and myofibroblastoid (MF)-lines from seven cases. In-depth characterisation included cell kinetics, genotype, tumourigenicity, expression of cell-type specific markers, and proteome patterns. Many functions of the cells of origin were found to be preserved. We studied the impact of the mesenchymal lines on hepatocarcinogenesis by in vitro assays. BLC- and MF-supernatants strongly increased the DNA replication of premalignant hepatocytes. The stimulation by MF-lines was mainly attributed to HGF secretion. In HCC-cells, MF-supernatant had only minor effects on cell growth but enhanced migration. MF-lines also stimulated neoangiogenesis through vEGF release. BLC-supernatant dramatically induced death of HCC-cells, which could be largely abrogated by preincubating the supernatant with TNFbeta-antiserum. Thus, the new cell lines reveal stage-specific stimulatory and inhibitory interactions between mesenchymal and epithelial tumour cells. In conclusion, the new cell lines provide unique tools to analyse essential components of the complex interplay between the microenvironment and the developing liver cancer, and to identify factors affecting proliferation, migration and death of tumour cells, neoangiogenesis, and outgrowth of additional malignancy.


Subject(s)
Carcinoma, Hepatocellular/physiopathology , Cell Communication , Liver Neoplasms/physiopathology , Animals , Cell Line, Tumor , Epithelial Cells , Humans , Mice , Rats
10.
Oncogene ; 26(49): 6979-88, 2007 Oct 25.
Article in English | MEDLINE | ID: mdl-17486063

ABSTRACT

Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, we identified transcriptional targets of the E-cadherin repressor ZEB1 in invasive human cancer cells. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell-cell adhesion, including the cell polarity genes Crumbs3, HUGL2 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promotor activities in reporter assays. ZEB1 downregulation in undifferentiated cancer cells by RNA interference was sufficient to upregulate expression of these cell polarity genes on the RNA and protein level, to re-establish epithelial features and to impair cell motility in vitro. In human colorectal cancer, ZEB1 expression was limited to the tumour-host interface and was accompanied by loss of intercellular adhesion and tumour cell invasion. In invasive ductal and lobular breast cancer, upregulation of ZEB1 was stringently coupled to cancer cell dedifferentiation. Our data show that ZEB1 represents a key player in pathologic EMTs associated with tumour progression.


Subject(s)
Breast Neoplasms/pathology , Cell Differentiation , Cell Polarity , Colonic Neoplasms/pathology , Cytoskeletal Proteins/antagonists & inhibitors , Homeodomain Proteins/metabolism , Membrane Glycoproteins/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Transcription Factors/metabolism , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cadherins/metabolism , Chromatin Immunoprecipitation , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Progression , Down-Regulation , Epithelium/metabolism , Epithelium/pathology , Gene Expression Profiling , Homeodomain Proteins/genetics , Humans , Immunoblotting , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Fluorescence , Middle Aged , Neoplasm Invasiveness/pathology , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Snail Family Transcription Factors , Transcription Factors/genetics , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
11.
Oncogene ; 26(23): 3395-405, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17130832

ABSTRACT

The cooperation of Ras - extracellular signal-regulated kinase/mitogen-activated protein kinase and transforming growth factor (TGF)-beta signaling provokes an epithelial to mesenchymal transition (EMT) of differentiated p19(ARF) null hepatocytes, which is accompanied by a shift in malignancy and gain of metastatic properties. Upon EMT, TGF-beta induces the secretion and autocrine regulation of platelet-derived growth factor (PDGF) by upregulation of PDGF-A and both PDGF receptors. Here, we demonstrate by loss-of-function analyses that PDGF provides adhesive and migratory properties in vitro as well as proliferative stimuli during tumor formation. PDGF signaling resulted in the activation of phosphatidylinositol-3 kinase, and furthermore associated with nuclear beta-catenin accumulation upon EMT. Hepatocytes expressing constitutively active beta-catenin or its negative regulator Axin were employed to study the impact of nuclear beta-catenin. Unexpectedly, active beta-catenin failed to accelerate proliferation during tumor formation, but in contrast, correlated with growth arrest. Nuclear localization of beta-catenin was accompanied by strong expression of the Cdk inhibitor p16(INK4A) and the concomitant induction of the beta-catenin target genes cyclin D1 and c-myc. In addition, active beta-catenin revealed protection of malignant hepatocytes against anoikis, which provides a prerequisite for the dissemination of carcinoma. From these data, we conclude that TGF-beta acts tumor progressive by induction of PDGF signaling and subsequent activation of beta-catenin, which endows a subpopulation of neoplastic hepatocytes with features of cancer stem cells..


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Nucleus/metabolism , Platelet-Derived Growth Factor/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism , Anoikis , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Disease Progression , Epithelial Cells/metabolism , Humans
12.
J Cell Physiol ; 209(2): 560-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16883581

ABSTRACT

The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-beta signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of beta-catenin. Genetic interference with TGF-beta signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear beta-catenin accumulation, indicating a crosstalk between TGF-beta and beta-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-beta dependent fashion by inducing autocrine TGF-beta signaling and nuclear beta-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-beta signaling is highly promising in liver cancer therapy.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/pathology , Liver Neoplasms/pathology , Transforming Growth Factor beta/pharmacology , Animals , Cell Adhesion/drug effects , Cell Nucleus/metabolism , Cell Transplantation , Disease Progression , Fibroblasts/drug effects , Fibrosis , Humans , Mice , Models, Biological , Paracrine Communication/drug effects , Rats , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Smad7 Protein/metabolism , beta Catenin/metabolism
13.
Oncogene ; 25(22): 3170-85, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16607286

ABSTRACT

Polarized hepatocytes expressing hyperactive Ha-Ras adopt an invasive and metastatic phenotype in cooperation with transforming growth factor (TGF)-beta. This dramatic increase in malignancy is displayed by an epithelial to mesenchymal transition (EMT), which mimics the TGF-beta-mediated progression of human hepatocellular carcinomas. In culture, hepatocellular EMT occurs highly synchronously, facilitating the analysis of molecular events underlying the various stages of this process. Here, we show that in response to TGF-beta, phosphorylated Smads rapidly translocated into the nucleus and activated transcription of target genes such as E-cadherin repressors of the Snail superfamily, causing loss of cell adhesion. Within the TGF-beta superfamily of cytokines, TGF-beta1, -beta2 and -beta3 were specific for the induction of hepatocellular EMT. Expression profiling of EMT kinetics revealed 78 up- and 235 downregulated genes, which preferentially modulate metabolic activities, extracellular matrix composition, transcriptional activities and cell survival. Independent of the genetic background, platelet-derived growth factor (PDGF)-A ligand and both PDGF receptor subunits were highly elevated, together with autocrine secretion of bioactive PDGF. Interference with PDGF signalling by employing hepatocytes expressing the dominant-negative PDGF-alpha receptor revealed decreased TGF-beta-induced migration in vitro and efficient suppression of tumour growth in vivo. In conclusion, these results provide evidence for a crucial role of PDGF in TGF-beta-mediated tumour progression of hepatocytes and suggest PDGF as a target for therapeutic intervention in liver cancer.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Liver Neoplasms/metabolism , Platelet-Derived Growth Factor/physiology , Transforming Growth Factor beta/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/prevention & control , Cell Nucleus/metabolism , Cyclin-Dependent Kinase Inhibitor p16 , Disease Progression , Humans , Liver Neoplasms/pathology , Liver Neoplasms/prevention & control , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , Phosphorylation , Rats , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Smad Proteins/metabolism , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p14ARF/physiology , beta Catenin/metabolism
15.
Exp Cell Res ; 261(1): 166-79, 2000 Nov 25.
Article in English | MEDLINE | ID: mdl-11082287

ABSTRACT

Previously we have reported about human nuclear matrix proteins (hNMPs) with increased reassembling and potential filament-forming capability [C. Gerner et al., 1999, J. Cell. Biochem. 74, 145-151]. Here, we cloned the cDNA of one of these proteins, hNMP 200, following partial amino acid sequencing of the novel 56-kDa nuclear protein. Sequence alignments show hNMP 200-related proteins in metazoans, plants, and yeast, the homologous Saccharomyces cerevisiae protein prp19 being an accessory, but essential, factor for pre-mRNA processing. Evidence for any enzymatic activity was not detected. However, the hNMP 200 primary sequence contained five consensus WD-repeat sequences, indicative of participation and regulatory function in larger protein assemblies. Northern blot analysis and 2D protein electrophoresis showed ubiquitous expression of hNMP 200 in a variety of cell types. (35)S labeling studies indicated a high metabolic stability of the protein. The hNMP 200 gene was assigned to chromosomal region 11q12.2. Confocal laser scanning microscopy revealed that the intracellular localization conformed with that reported for other structural nuclear proteins. In interphase cells, green fluorescent protein-tagged hNMP 200 was predominantly nucleoplasmic. Structures with speckled appearance extended through several sections of in situ-isolated nuclear matrices. During cell division hNMP 200 became irregularly distributed in prophase, sparing regions of condensing chromatin. In anaphase it was concentrated in the spindle midzone. The putative dual function of the novel NMP is discussed. Being a component of the nuclear framework, it may provide structural support for components of the RNA-processing machinery, thereby also modulating splicing activities.


Subject(s)
Cell Cycle/physiology , Chromosomes, Human, Pair 11 , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Amino Acid Sequence , Animals , Arabidopsis/genetics , Base Sequence , Cell Division , Cell Line , Chromosome Mapping , Cloning, Molecular , Conserved Sequence , DNA Repair Enzymes , HeLa Cells , Humans , Jurkat Cells , K562 Cells , Molecular Sequence Data , Organ Specificity , RNA Splicing Factors , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Tumor Cells, Cultured
16.
Biochem Biophys Res Commun ; 275(2): 292-4, 2000 Aug 28.
Article in English | MEDLINE | ID: mdl-10964660

ABSTRACT

In general, translation efficiency of ferritin mRNAs is modulated by variations in iron supply. In primary avian erythroblasts undergoing short-term proliferation, however, ferritin heavy chain (ferH) mRNA is repressed at all iron levels. Yet, expression of v-ErbA oncoprotein is sufficient to reinduce ferH mRNA utilization at physiological iron concentrations. Since overexpression of the receptor tyrosine kinase c-Kit and erythropoietin receptor (EpoR) stimulates long-term proliferation of primary erythroblasts like v-ErbA, we analyzed the impact of cooperation between c-Kit and EpoR on the regulation of iron storage. Whereas endogenous c-Kit in combination with exogenous EpoR had no significant effect, ectopic overexpression of both receptors abolished translational repression of ferH mRNA upon iron administration. Thus, high-intensity signaling through c-Kit plus EpoR pathways mimics the v-ErbA-mediated regulatory phenotype.


Subject(s)
Erythroblasts/metabolism , Ferritins/genetics , Oncogene Proteins v-erbA/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins c-kit/pharmacology , RNA, Messenger/genetics , Receptors, Erythropoietin/metabolism , Signal Transduction , Animals , Cells, Cultured , Chickens , Erythroblasts/drug effects
17.
FASEB J ; 14(11): 1641-52, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10928999

ABSTRACT

Translationalregulation plays an important role in the control of gene expression. Changes in translation initiation rates are the most common translation-regulating mechanisms, resulting in alterations in mRNA loading of ribosomes. This differential mobilization of mRNAs onto polyribosomes was used in differential screening to directly identify cDNAs whose transcripts are translationally controlled during antigenic stimulation of primary human T lymphocytes. Ribosome-free and polysome-bound mRNAs were prepared from quiescent and activated T cells and used as templates to synthesize four cDNA pools. These in turn were used as probes to hybridize four identical replicas of a T cell library or, alternatively, four cDNA arrays. Translational activation was indicated by redistribution of the hybridization signals from the ribosome-free fraction in resting T cells to the polysome-associated fraction in activated T cells. Translational repression corresponded to the opposite hybridization pattern. Fifty-two cDNAs were identified as translationally controlled by screening 472 genes in a cDNA array; 12 additional ones were obtained by screening a cDNA library. Several of the transcripts corresponded to mRNAs previously reported to be translationally controlled, thus validating the method. For the majority, however, such regulation had not yet been described. Translational control was verified for representative examples by demonstrating the redistribution of the corresponding mRNAs on polysome gradients in response to T cell activation. Our strategy therefore provides an efficient tool to directly isolate or identify translationally controlled mRNAs in a variety of physiological situations. Moreover, differential screening using arrays enables simultaneous analysis of both transcriptional and translational regulation, further enhancing the power of gene expression analysis.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocytes/metabolism , Cells, Cultured , Centrifugation, Density Gradient , Cloning, Molecular/methods , DNA, Complementary/genetics , Flow Cytometry , Gene Library , Genes , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Oligonucleotide Array Sequence Analysis , Polyribosomes/genetics , Polyribosomes/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
18.
Blood ; 94(12): 4321-32, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-10590077

ABSTRACT

In immortalized cells of the erythroid lineage, the iron-regulatory protein (IRP) has been suggested to coregulate biosynthesis of the iron storage protein ferritin and the erythroid delta-aminolevulinate synthase (eALAS), a key enzyme in heme production. Under iron scarcity, IRP binds to an iron-responsive element (IRE) located in ferritin and eALAS mRNA leaders, causing a block of translation. In contrast, IRP-IRE interaction is reduced under high iron conditions, allowing efficient translation. We show here that primary chicken erythroblasts (ebls) proliferating or differentiating in culture use a drastically different regulation of iron metabolism. Independently of iron administration, ferritin H (ferH) chain mRNA translation was massively decreased, whereas eALAS transcripts remained constitutively associated with polyribosomes, indicating efficient translation. Variations in iron supply had minor but significant effects on eALAS mRNA polysome recruitment but failed to modulate IRP-affinity to the ferH-IRE in vitro. However, leukemic ebls transformed by the v-ErbA/v-ErbB-expressing avian erythroblastosis virus showed an iron-dependent reduction of IRP mRNA-binding activity, resulting in mobilization of ferH mRNA into polysomes. Hence, we analyzed a panel of ebls overexpressing v-ErbA and/or v-ErbB oncoproteins as well as the respective normal cellular homologues (c-ErbA/TRalpha, c-ErbB/EGFR). It turned out that v-ErbA, a mutated class II nuclear hormone receptor that arrests erythroid differentiation, caused the change in ferH mRNA translation. Accordingly, inhibition of v-ErbA function in these leukemic ebls led to a switch from iron-responsive to iron-independent ferH expression.


Subject(s)
Erythroblasts/metabolism , Ferritins/metabolism , Iron/metabolism , Oncogene Proteins v-erbA/metabolism , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Animals , Chickens , Ferritins/genetics , Gene Expression Regulation , Molecular Sequence Data , Oncogene Proteins v-erbA/genetics , Protein Biosynthesis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Tumor Cells, Cultured
19.
Mutat Res ; 437(3): 219-30, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10592329

ABSTRACT

Tight regulation of iron metabolism is crucial to avoid formation of deleterious radicals and is mainly executed at the post-transcriptional level. The regulatory loops are exerted by trans-acting iron regulatory proteins (IRPs) and cis-acting stem-loop motifs, termed iron-responsive elements (IREs), located in the untranslated regions (UTRs) of target mRNAs. Iron scarcity induces binding of IRPs to a single IRE in the 5'-UTR of ferritin, eALAS, aconitase and SDHb mRNAs, which specifically suppresses translation initiation. Simultaneous interaction of IRPs with multiple IREs in the 3'-UTR of transferrin receptor (TfR) mRNA selectively causes its stabilization. The pattern is reverted under iron overload: IRP-mRNA binding affinity is reduced, which results in efficient protein synthesis of target transcripts harboring IREs in the 5'-UTR and rapid degradation of TfR mRNA. Although multiple evidences support this model, several studies reported massive alterations in the regulation of iron homeostasis under specific physiological conditions, raising the possibility for additional regulatory events. Intensive analysis of the palindromic IRE consensus sequence revealed the critical elements for the formation of a functional structure and demonstrated the consequences of IRE mutations in IRP binding. Recent investigations indicated the involvement of naturally occurring IRE mutations of the ferritin L subunit in the hyperferritinemia-cataract syndrome, a hereditary disorder. This review summarizes the apparent links between iron-dependent post-transcriptional control and its abnormalities, governed by the properties of a single mRNA stem-loop structure.


Subject(s)
Iron/metabolism , RNA, Messenger/genetics , Animals , Ferritins/blood , Ferritins/genetics , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/etiology , Humans , Iron-Regulatory Proteins , Iron-Sulfur Proteins/genetics , Mutation/genetics , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...