Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062683

ABSTRACT

Amaranthus retroflexus L. (redroot pigweed) is one of the most problematic weeds in maize, sugar beet, vegetables, and soybean crop fields in Europe. Two pigweed amaranth biotypes (R1 and R2) from the Czech Republic resistant to photosystem II (PSII)-inhibiting herbicides were analyzed in this study. This study aimed to identify the genetic mechanisms that underlie the resistance observed in the biotypes. Additionally, we also intended to establish the use of chlorophyll fluorescence measurement as a rapid and reliable method for confirming herbicide resistance in this weed species. Both biotypes analyzed showed high resistance factors in a dose-response study and were thus confirmed to be resistant to PSII-inhibiting herbicides. A sequence analysis of the D1 protein revealed a well-known Ser-Gly substitution at amino acid position 264 in both biotypes. Molecular docking studies, along with the wild-type and mutant D1 protein's secondary structure analyses, revealed that the S264G mutation did not reduce herbicide affinity but instead indirectly affected the interaction between the target protein and the herbicides. The current study identified the S264G mutation as being responsible for conferring herbicide resistance in the pigweed amaranth biotypes. These findings can provide a strong basis for future studies that might use protein structure and mutation-based approaches to gain further insights into the detailed mechanisms of resistance in this weed species. In many individuals from both biotypes, resistance at a very early stage (BBCH10) of plants was demonstrated several hours after the application of the active ingredients by the chlorophyll fluorescence method. The effective PS II quantum yield parameter can be used as a rapid diagnostic tool for distinguishing between sensitive and resistant plants on an individual level. This method can be useful for identifying herbicide-resistant weed biotypes in the field, which can help farmers and weed management practitioners develop more effective weed control tactics.


Subject(s)
Amaranthus , Herbicide Resistance , Herbicides , Photosystem II Protein Complex , Amaranthus/genetics , Amaranthus/drug effects , Amaranthus/growth & development , Herbicide Resistance/genetics , Herbicides/pharmacology , Czech Republic , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Weeds/genetics , Plant Weeds/drug effects , Molecular Docking Simulation , Mutation
2.
Pest Manag Sci ; 77(4): 2122-2128, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33332713

ABSTRACT

BACKGROUND: Intensive application of acetolactate synthase (ALS)-inhibiting herbicides has resulted in herbicide-resistance in many weeds, including Bromus sterilis. The present study was conducted to identify the mechanisms conferring resistance to ALS-inhibiting herbicides in a Bromus sterilis biotype. RESULTS: Dose-response studies revealed the resistant biotype to be 288 times less sensitive to pyroxsulam than the susceptible biotype. Furthermore, experiment with a single-dose, proved this biotype was also cross-resistant to propoxycarbazone, iodosulfuron plus mesosulfuron and sulfosulfuron. Prior treatment with malathion, a known inhibitor of cytochrome P450s, reduced the level of resistance to pyroxsulam. No mutations were detected from the partial ALS gene sequencing. Flow cytometry and chromosome counting rejected ploidy level variation between the susceptible and resistant biotypes. Relative copy number variation ruled out gene amplification. Quantitative real-time polymerase chain reaction (PCR) detected a significant difference in ALS gene expression between the susceptible and resistant biotypes. CONCLUSIONS: Target gene overexpression and enhanced metabolism by cytochrome P450s are likely mechanisms of resistance to pyroxsulam in Bromus sterilis. The current findings highlight the need to monitor additional brome populations for herbicide resistance in Europe and endorse the need for alternate herbicides in integrated weed management to delay the possible evolution of herbicide resistance in these species. © 2020 Society of Chemical Industry.


Subject(s)
Acetolactate Synthase , Herbicides , Acetolactate Synthase/genetics , Bromus , DNA Copy Number Variations , Europe , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...