Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Thorax ; 77(10): 968-975, 2022 10.
Article in English | MEDLINE | ID: mdl-34853156

ABSTRACT

RATIONALE: Dietary nitrate supplementation improves skeletal muscle oxygen utilisation and vascular endothelial function. We hypothesised that these effects might be sufficient to improve exercise performance in patients with COPD and hypoxia severe enough to require supplemental oxygen. METHODS: We conducted a single-centre, double-blind, placebo-controlled, cross-over study, enrolling adults with COPD who were established users of long-term oxygen therapy. Participants performed an endurance shuttle walk test, using their prescribed oxygen, 3 hours after consuming either 140 mL of nitrate-rich beetroot juice (BRJ) (12.9 mmol nitrate) or placebo (nitrate-depleted BRJ). Treatment order was allocated (1:1) by computer-generated block randomisation. MEASUREMENTS: The primary outcome was endurance shuttle walk test time. The secondary outcomes included area under the curve to isotime for fingertip oxygen saturation and heart rate parameters during the test, blood pressure, and endothelial function assessed using flow-mediated dilatation. Plasma nitrate and nitrite levels as well as FENO were also measured. MAIN RESULTS: 20 participants were recruited and all completed the study. Nitrate-rich BRJ supplementation prolonged exercise endurance time in all participants as compared with placebo: median (IQR) 194.6 (147.5-411.7) s vs 159.1 (121.9-298.5) s, estimated treatment effect 62 (33-106) s (p<0.0001). Supplementation also improved endothelial function: NR-BRJ group +4.1% (-1.1% to 14.8%) vs placebo BRJ group -5.0% (-10.6% to -0.6%) (p=0.0003). CONCLUSION: Acute dietary nitrate supplementation increases exercise endurance in patients with COPD who require supplemental oxygen. Trial registration number ISRCTN14888729.


Subject(s)
Nitrates , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Cross-Over Studies , Exercise Tolerance , Dietary Supplements , Antioxidants , Oxygen , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypoxia , Double-Blind Method
2.
Oxid Med Cell Longev ; 2019: 6217837, 2019.
Article in English | MEDLINE | ID: mdl-31827686

ABSTRACT

Myocardial ischemia/reperfusion-related oxidative stress as a result of cardiopulmonary bypass is thought to contribute to the adverse clinical outcomes following surgical aortic valve replacement (SAVR). Although the acute response following this procedure has been well characterized, much less is known about the nature and extent of oxidative stress induced by the transcatheter aortic valve replacement (TAVR) procedure. We therefore sought to examine and directly compare the oxidative stress response in patients undergoing TAVR and SAVR. A total of 60 patients were prospectively enrolled in this exploratory study, 38 patients undergoing TAVR and 22 patients SAVR. Reduced and oxidized glutathione (GSH, GSSG) in red blood cells as well as the ferric-reducing ability of plasma (FRAP) and plasma concentrations of 8-isoprostanes were measured at baseline (S1), during early reperfusion (S2), and 6-8 hours (S3) following aortic valve replacement (AVR). TAVR and SAVR were successful in all patients. Patients undergoing TAVR were older (79.3 ± 9.5 vs. 74.2 ± 4.1 years; P < 0.01) and had a higher mean STS risk score (6.6 ± 4.8 vs. 3.2 ± 3.0; P < 0.001) than patients undergoing SAVR. At baseline, FRAP and 8-isoprostane plasma concentrations were similar between the two groups, but erythrocytic GSH concentrations were significantly lower in the TAVR group. After AVR, FRAP was markedly higher in the TAVR group, whereas 8-isoprostane concentrations were significantly elevated in the SAVR group. In conclusion, TAVR appears not to cause acute oxidative stress and may even improve the antioxidant capacity in the extracellular compartment.


Subject(s)
Aortic Valve Stenosis/surgery , Oxidative Stress , Stress, Physiological , Transcatheter Aortic Valve Replacement/methods , Aged , Aortic Valve Stenosis/epidemiology , Chile/epidemiology , Female , Follow-Up Studies , Humans , Male , Prospective Studies , Risk Factors , Treatment Outcome , United Kingdom/epidemiology
3.
Int J Mol Sci ; 20(5)2019 03 06.
Article in English | MEDLINE | ID: mdl-30845762

ABSTRACT

In pregnancy, maternal physiology is subject to considerable adaptations, including alterations in cardiovascular and metabolic function as well as development of immunological tolerance towards the fetus. In an oocyte donation pregnancy, the fetus is fully allogeneic towards the mother, since it carries both oocyte donor antigens and paternal antigens. Therefore, oocyte donation pregnancies result in an immunologically challenging pregnancy, which is reflected by a higher-than-normal risk to develop pre-eclampsia. Based on the allogeneic conditions in oocyte donation pregnancies, we hypothesized that this situation may translate into alterations in concentration of stable readouts of constituents of the reactive species interactome (RSI) compared to normal pregnancies, especially serum free thiols, nitric oxide (NO) and hydrogen sulfide (H2S) related metabolites. Indeed, total free thiol levels and nitrite (NO2-) concentrations were significantly lower whereas protein-bound NO and sulfate (SO42-) concentrations were significantly higher in both oocyte donation and naturally conceived pregnancies complicated by pre-eclampsia. The increased concentrations of nitrite observed in uncomplicated oocyte donation pregnancies suggest that endothelial NO production is compensatorily enhanced to lower vascular tone. More research is warranted on the role of the RSI and bioenergetic status in uncomplicated oocyte donation pregnancies and oocyte donation pregnancies complicated by pre-eclampsia.


Subject(s)
Nitric Oxide/metabolism , Oocyte Donation/adverse effects , Pre-Eclampsia/metabolism , Sulfhydryl Compounds/metabolism , Adult , Case-Control Studies , Female , Fertilization in Vitro , Humans , Hydrogen Sulfide , Maternal Age , Middle Aged , Pregnancy , Retrospective Studies , Young Adult
4.
Redox Biol ; 21: 101113, 2019 02.
Article in English | MEDLINE | ID: mdl-30738322

ABSTRACT

The chemical and functional interactions between Reactive Oxygen (ROS), Nitrogen (RNS) and Sulfur (RSS) species allow organisms to detect and respond to metabolic and environmental stressors, such as exercise and altitude exposure. Whether redox markers and constituents of this 'Reactive Species Interactome' (RSI) differ in concentration between arterial and venous blood is unknown. We hypothesised that such measurements may provide useful insight into metabolic/redox regulation at the whole-body level and would be consistent between individuals exposed to identical challenges. An exploratory study was performed during the Xtreme Alps expedition in 2010 in which four healthy individuals (2 male, 2 female) underwent paired arterial and central venous blood sampling before, during and after performance of a constant-work-rate cardiopulmonary exercise test, at sea level and again at 4559 m. Unexpectedly, plasma total free thiol and free cysteine concentrations remained substantially elevated at altitude throughout exercise with minimal arteriovenous gradients. Free sulfide concentrations changed only modestly upon combined altitude/exercise stress, whereas bound sulfide levels were lower at altitude than sea-level. No consistent signal indicative of the expected increased oxidative stress and nitrate→nitrite→NO reduction was observed with 4-hydroxynonenal, isoprostanes, nitrate, nitrite, nitroso species and cylic guanosine monophosphate. However, the observed arteriovenous concentration differences revealed a dynamic pattern of response that was unique to each participant. This novel redox metabolomic approach of obtaining quantifiable 'metabolic signatures' to a defined physiological challenge could potentially offer new avenues for personalised medicine.


Subject(s)
Biomarkers/blood , Metabolomics , Oxidation-Reduction , Blood Gas Analysis , Exercise , Female , Humans , Male , Metabolomics/methods , Reactive Oxygen Species/metabolism , Stress, Physiological
5.
Oxid Med Cell Longev ; 2018: 8309698, 2018.
Article in English | MEDLINE | ID: mdl-29854098

ABSTRACT

The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.


Subject(s)
NF-E2-Related Factor 2/genetics , Nitric Oxide Synthase Type II/genetics , Animals , Aorta/metabolism , Cardiomegaly/diagnostic imaging , Glutathione/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , NF-E2-Related Factor 2/deficiency , Nitrates/metabolism , Nitric Oxide Synthase Type II/deficiency , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Ultrasonography , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...