Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 126(36): 11156-7, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15355089

ABSTRACT

The discovery, from nature, of a diverse set of microbial epoxide hydrolases is reported. The utility of a library of epoxide hydrolases in the synthesis of chiral 1,2-diols via desymmetrization of a wide range of meso-epoxides, including cyclic as well as acyclic alkyl- and aryl-substituted substrates, is demonstrated. The chiral (R,R)-diols were furnished with high ee's and yields. The discovery of the first microbial epoxide hydrolases providing access to complementary (S,S)-diols is also described.


Subject(s)
Alcohols/chemistry , Epoxide Hydrolases/chemistry , Epoxy Compounds/chemistry , Catalysis , Epoxide Hydrolases/metabolism , Stereoisomerism
2.
Appl Environ Microbiol ; 70(4): 2429-36, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15066841

ABSTRACT

Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 10(6) to 10(10) members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.


Subject(s)
Aminohydrolases/genetics , Aminohydrolases/metabolism , Catalysis , Environmental Microbiology , Gene Library , Molecular Sequence Data , Nitriles/chemistry , Nitriles/metabolism , Phylogeny , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...