Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 11(1): 12143, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108526

ABSTRACT

An innovative scanning harmonic radar has been recently developed for tracking insects in complex landscapes. This movable technology has been tested on an invasive hornet species (Vespa velutina) for detecting the position of their nests in the environment, in the framework of an early detection strategy. The new model of harmonic radar proved to be effective in tracking hornets either in open landscapes, hilly environments and areas characterised by the presence of more obstacles, such as woodlands and urban areas. Hornets were effectively tracked in complex landscapes for a mean tracking length of 96 ± 62 m with maximum values of ~ 300 m. The effectiveness of locating nests was 75% in new invasive outbreaks and 60% in highly density colonised areas. Furthermore, this technology could provide information on several aspects of insect's ecology and biology. In this case, new insights were obtained about the mean foraging range of V. velutina (395 ± 208 m with a maximum value of 786 m) and flying features (ground speed), which was 6.66 ± 2.31 m s-1 for foraging individuals (hornets that are not carrying prey's pellet) and 4.06 ± 1.34 m s-1 for homing individuals.

2.
Sci Rep ; 9(1): 11964, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427653

ABSTRACT

Over the last 30 years, harmonic radars have been effective only in tracking insects flying at low altitude and over flat terrain. We developed an innovative harmonic radar, implementing the most advanced radar techniques, which covers a large field of view in elevation (with an angular aperture of about 24°) and can track insects up to a range of 500 m. We show all the components of this new harmonic radar and its first application, the tracking of Vespa velutina (yellow-legged Asian hornet). This is an invasive species which, although indigenous to South-East Asia, is spreading quickly to other regions of the world. Because of its fast diffusion and the serious threat it poses to both honeybee colonies and to humans, control measures are mandatory. When equipped with a small passive transponder, this radar system can track the flight trajectory of insects and locate nests to be destroyed. This tool has potential not only for monitoring V. velutina but also for tracking other larger insects and small size vertebrates.


Subject(s)
Flight, Animal , Insecta , Radar , Remote Sensing Technology , Animals , Ecosystem , Image Processing, Computer-Assisted , Introduced Species , Radar/instrumentation , Signal Processing, Computer-Assisted
3.
Ecol Evol ; 7(13): 4599-4606, 2017 07.
Article in English | MEDLINE | ID: mdl-28690790

ABSTRACT

The yellow-legged Asian hornet is an invasive species of wasps, indigenous of the South-East Asia but quickly spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honey bee colonies and to humans as well, restraint measures are under investigation. Among them, the harmonic radar described in (Ecology and Evolution, 6, 2016 and 2170) already proved to be a quite effective way to follow the hornets to their nests; it is in fact capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. The aforementioned harmonic radar was upgraded after a period of intense experimentation; the capture of the hornets was enhanced as well, and other improvements were adopted in the mounting procedure of the transponder. Thanks to these upgrades, the flying capabilities of the hornets were not reduced and a huge collection of data was recorded. The main upgrade to the radar was the adoption of the vertical polarization of the radiated field, with the consequent redesign and manufacturing of the antennas and the different mounting of the transceiver on the insect. The installation of the radar on a telescopic tower drastically improved the maneuverability of the system and the capability to follow the insects' preferential flying directions. Eventually, the system was able to produce much more continuous traces with a clear indication of the most probable position of the nest. The maximum range of detection was also increased to 150 m.

4.
Ecol Evol ; 6(7): 2170-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27069583

ABSTRACT

The yellow-legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On-field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low-cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow-legged Asian hornet.

SELECTION OF CITATIONS
SEARCH DETAIL
...