Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Hum Genet ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753158

ABSTRACT

Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.

2.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
3.
Article in English | MEDLINE | ID: mdl-38385826

ABSTRACT

Loss-of-function CHD2 (chromodomain helicase DNA-binding protein 2) mutations are associated with a spectrum of neurodevelopmental disorders often including early-onset generalized seizures, photosensitivity, and epileptic encephalopathies. Patients show psychomotor delay/intellectual disability (ID), autistic features, and behavior disorders, such as aggression and impulsivity. Most reported cases are sporadic with description of germline mosaicism only in two families. We detect the first case of parental gonosomal CHD2 mosaicism disclosed by two brothers showing mild ID, born to healthy parents. The eldest brother has a history of drug-controlled generalized tonic-clonic seizures and displays sleep disorder and aggressive behavior suggestive of Smith-Magenis syndrome (SMS). Analysis of brothers' DNAs by next-generation sequencing (NGS) custom gene panel for pediatric epilepsy and/or ID disclosed in both the same pathogenic CHD2 variant. Additional NGS experiment on genomic DNA from parents' peripheral blood and from buccal swab raised the suspicion of low-grade gonosomal mosaicism in the unaffected mother subsequently confirmed by digital polymerase chain reaction (dPCR). This report underlines as worthwhile CHD2 screening in individuals presenting ID/developmental delay, with/without epilepsy, and behavior and sleep disorders suggestive of SMS. Detecting a CHD2 variant should prime testing probands' parents by NGS coupled to dPCR on different tissues to exclude/confirm gonosomal mosaicism and define the recurrence risk.

4.
Mol Genet Genomic Med ; 12(1): e2316, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041506

ABSTRACT

BACKGROUND: The recent guidelines suggest the use of genome-wide analyses, such as whole exome sequencing (WES), at the beginning of the diagnostic approach for cases with suspected genetic conditions. However, in many realities it still provides for the execution of a multi-step pathway, thus requiring several genetic tests to end the so-called 'diagnostic odyssey'. METHODS: We reported the results of GENE Project (Genomic analysis Evaluation NEtwork): a multicentre prospective cohort study on 125 paediatric outpatients with a suspected genetic disease in which we performed first-tier trio-WES, including exome-based copy number variation analysis, in parallel to a 'traditional approach' of two/three sequential genetic tests. RESULTS: First-tier trio-WES detected a conclusive diagnosis in 41.6% of patients, way above what was found with routine genetic testing (25%), with a time-to-result of about 50 days. Notably, the study showed that 44% of WES-reached diagnoses would be missed with the traditional approach. The diagnostic rate (DR) of the two approaches varied in relation to the phenotypic class of referral and to the proportion of cases with a defined diagnostic suspect, proving the major difference for neurodevelopmental disorders. Moreover, trio-WES analysis detected variants in candidate genes of unknown significance (EPHA4, DTNA, SYNCRIP, NCOR1, TFDP1, SPRED3, EDA2R, PHF12, PPP1R12A, WDR91, CDC42BPG, CSNK1D, EIF3H, TMEM63B, RIPPLY3) in 19.4% of undiagnosed cases. CONCLUSION: Our findings represent real-practice evidence of how first-tier genome-wide sequencing tests significantly improve the DR for paediatric outpatients with a suspected underlying genetic aetiology, thereby allowing a time-saving setting of the correct management, follow-up and family planning.


Subject(s)
DNA Copy Number Variations , Outpatients , Humans , Child , Prospective Studies , Exome Sequencing , Genome-Wide Association Study , Italy
5.
Clin Genet ; 105(3): 313-316, 2024 03.
Article in English | MEDLINE | ID: mdl-37990933

ABSTRACT

We report the case of a 12-year-old girl and her father who both had marked postnatal tall stature, camptodactyly and clinodactyly, scoliosis and juvenile-onset hearing loss. The CATSHL (CAmptodactyly - Tall stature - Scoliosis - Hearing Loss syndrome) syndrome was suspected, and molecular analysis revealed a hitherto unreported, monoallelic variant c.1861C>T (p.Arg621Cys) in FGFR3. This variant affects the same residue, but is different than, the variant p.Arg621His reported in the two families with dominant CATSHL described so far. Interestingly, peg-shaped incisors were observed in the proband, a feature never reported in CATSHL but typical of another FGFR3-related condition, LADD (Lacrimo - Auricolo - Dento - Digital) syndrome. The FGFR3 p.Arg621Cys variant seems to be a newly identified cause of CATSHL syndrome with some phenotypic overlap with the LADD syndrome.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Deafness , Hand Deformities, Congenital , Hearing Loss , Lacrimal Apparatus Diseases , Limb Deformities, Congenital , Scoliosis , Syndactyly , Tooth Abnormalities , Female , Humans , Child , Scoliosis/genetics , Hearing Loss/genetics , Syndrome
6.
Brain ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038360

ABSTRACT

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function (LoF) or gain-of-function (GoF) properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12), and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for LoF and GoF variants. GoF variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age one month), hypertonic, and more often had movement disorders, including hyperekplexia. Patients with LoF variants were older at the time of seizure onset (median age 16 months), hypotonic, and had sleeping disturbances. LoF and GoF variants were disease-causing in both sexes but affected males often carried de novo or hemizygous LoF variants inherited from healthy mothers, whereas all but one affected females had de novo heterozygous GoF variants.

7.
Br J Dermatol ; 189(6): 741-749, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37671665

ABSTRACT

BACKGROUND: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown. OBJECTIVES: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition. METHODS: Exome sequencing was performed in 27 patients diagnosed with SAH or with a complaint of short, nongrowing hair. The cohort was screened for variants with a minor allele frequency (MAF) < 5% in the general population and a Combined Annotation Dependent Depletion (CADD) score > 15, to identify genes whose variants were enriched in this cohort. Sanger sequencing was used for variant validation and screening of 21 additional individuals with the same clinical diagnosis and their relatives. Genetic association testing of SAH-related variants for male pattern hair loss (MPHL) was performed using UK Biobank data. RESULTS: Analyses revealed that 20 individuals (42%) carried mono- or biallelic pathogenic variants in WNT10A. Rare WNT10A variants are associated with a phenotypic spectrum ranging from no clinical signs to severe ectodermal dysplasia. A significant association was found between WNT10A and SAH, and this was mostly observed in individuals with light-coloured hair and regression of the frontoparietal hairline. Notably, the most frequent variant in the cohort [c.682T>A;p.(Phe228Ile)] was in linkage disequilibrium with four common WNT10A variants, all of which have a known association with MPHL. Using UK Biobank data, our analyses showed that c.682T>A;p.(Phe228Ile) and one other variant identified in the SAH cohort are also associated with MPHL, and partially explain the known associations between WNT10A and MPHL. CONCLUSIONS: Our results suggest that WNT10A is associated with SAH and that SAH has a genetic overlap with the common phenotype MPHL. The presumed shared biologic effect of WNT10A variants in SAH and MPHL is a shortening of the anagen phase. Other factors, such as modifier genes and sex, may also play a role in the clinical manifestation of hair phenotypes associated with the WNT10A locus.


Subject(s)
Ectodermal Dysplasia , Hair , Humans , Male , Child , Alopecia , Phenotype , Ectodermal Dysplasia/genetics , Gene Frequency , Wnt Proteins/genetics
8.
Eur J Hum Genet ; 31(11): 1251-1260, 2023 11.
Article in English | MEDLINE | ID: mdl-37644171

ABSTRACT

Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Animals , Humans , Mice , Heterozygote , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Repressor Proteins/genetics , Seizures , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Neurogenetics ; 24(3): 181-188, 2023 07.
Article in English | MEDLINE | ID: mdl-37145209

ABSTRACT

Neurofibromatosis type I (NF1) microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by the heterozygous deletion of NF1 and a variable number of flanking genes in the 17q11.2 region. This syndrome is characterized by more severe symptoms than those shown by patients with intragenic NF1 mutation and by variable expressivity, which is not fully explained by the haploinsufficiency of the genes included in the deletions. We here reevaluate an 8-year-old NF1 patient, who carries an atypical deletion generating the RNF135-SUZ12 chimeric gene, previously described when he was 3 years old. As the patient has developed multiple cutaneous/subcutaneous neurofibromas over the past 5 years, we hypothesized a role of RNF135-SUZ12 chimeric gene in the onset of the patient's tumor phenotype. Interestingly, SUZ12 is generally lost or disrupted in NF1 microdeletion syndrome and frequently associated to cancer as RNF135. Expression analysis confirmed the presence of the chimeric gene transcript and revealed hypo-expression of five out of the seven analyzed target genes of the polycomb repressive complex 2 (PRC2), to which SUZ12 belongs, in the patient's peripheral blood, indicating a higher transcriptional repression activity mediated by PRC2. Furthermore, decreased expression of tumor suppressor gene TP53, which is targeted by RNF135, was detected. These results suggest that RNF135-SUZ12 chimera may acquire a gain of function, compared with SUZ12 wild type in the PRC2 complex, and a loss of function relative to RNF135 wild type. Both events may have a role in the early onset of the patient's neurofibromas.


Subject(s)
Neurofibroma , Neurofibromatosis 1 , Male , Humans , Neurofibromatosis 1/genetics , Polycomb Repressive Complex 2/genetics , Neurofibroma/genetics , Phenotype , Mutation , Ubiquitin-Protein Ligases/genetics
10.
Genes (Basel) ; 14(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36833222

ABSTRACT

Sotos syndrome is a rare genetic disorder caused by haploinsufficiency of the NSD1 (nuclear receptor binding SET domain containing protein 1) gene. No clinical diagnostic consensus criteria are published yet, and molecular analysis reduces the clinical diagnostic uncertainty. We screened 1530 unrelated patients enrolled from 2003 to 2021 at Galliera Hospital and Gaslini Institute in Genoa. NSD1 variants were identified in 292 patients including nine partial gene deletions, 13 microdeletions of the entire NSD1 gene, and 115 novel intragenic variants never previously described. Thirty-two variants of uncertain significance (VUS) out of 115 identified were re-classified. Twenty-five missense NSD1 VUS (25/32, 78.1%) changed class to likely pathogenic or likely benign, showing a highly significant shift in class (p < 0.01). Apart from NSD1, we identified variants in additional genes (NFIX, PTEN, EZH2, TCF20, BRWD3, PPP2R5D) in nine patients analyzed by the NGS custom panel. We describe the evolution of diagnostic techniques in our laboratory to ascertain molecular diagnosis, the identification of 115 new variants, and the re-classification of 25 VUS in NSD1. We underline the utility of sharing variant classification and the need to improve communication between the laboratory staff and the referring physician.


Subject(s)
Sotos Syndrome , Humans , Mutation , Histone Methyltransferases , Mutation, Missense , Gene Deletion , Transcription Factors/genetics , Protein Phosphatase 2/genetics , Histone-Lysine N-Methyltransferase/genetics
11.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36765732

ABSTRACT

Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).

12.
Endocrine ; 81(1): 98-106, 2023 07.
Article in English | MEDLINE | ID: mdl-36690897

ABSTRACT

PURPOSE: PTEN hamartoma tumor syndrome (PHTS) comprises a group of rare genetic conditions caused by germline mutations in PTEN gene and characterized by development of both benign and malignant lesions in many body tissues. In this study, we aimed to evaluate the incidence of thyroid findings in both adult and pediatric PHTS patients. METHODS: A retrospectively analysis conducted in 19 (13 adult and 6 pediatric) patients with PHTS, all confirmed with genetic testing, observed from 2015 to 2021 at the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. RESULTS: We found a thyroid involvement in 12 adult patients (92%): 11 patients had benign lesions (85%) and the remaining developed a follicular thyroid carcinoma (8.3%). The median age at time of the first available record was 30 years. Among benign lesions, multinodular goiter was the most observed finding (10/11, 91%). Only 1 out of 6 (16%) pediatric patients was diagnosed with a thyroid lesion (unifocal lesion in mild lymphocytic thyroiditis) at the age of 8 years. CONCLUSIONS: Thyroid disorders affected nearly all adult PHTS patients, but a much lower proportion of pediatric patients. We discuss about the natural history of thyroid involvement, age of PHTS clinical onset, and optimized surveillance.


Subject(s)
Hamartoma Syndrome, Multiple , Thyroid Diseases , Thyroid Neoplasms , Humans , Child , Adult , Hamartoma Syndrome, Multiple/genetics , Retrospective Studies , Thyroid Diseases/complications , Thyroid Diseases/epidemiology , Thyroid Diseases/genetics , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/genetics , PTEN Phosphohydrolase/genetics
13.
Mol Syndromol ; 13(6): 543-550, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36660030

ABSTRACT

Introduction: Mendelian disorders of the epigenetic machinery are a growing group of disorders exhibiting several overlapping clinical features that are probably due to common abnormalities at the epigenomic level, which lead to downstream convergence at the transcriptomic level. Case presentation: Here, we report a new case of short stature, brachydactyly, intellectual developmental disability, and seizures (SBIDDS) syndrome with a severe ocular phenotype and hypogonadism. Conclusion: Similarities and connections with other mendelian disorders of the epigenetic machinery are highlighted, confirming SBIDDS' enrolment as a new spoke of the epigenetic machinery wheel.

14.
Genes Genomics ; 45(5): 637-655, 2023 05.
Article in English | MEDLINE | ID: mdl-36454368

ABSTRACT

BACKGROUND: Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE: To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS: We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS: Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION: This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.


Subject(s)
Genetic Testing , Exome Sequencing , Phenotype , Genetic Association Studies
15.
Am J Med Genet A ; 191(2): 424-436, 2023 02.
Article in English | MEDLINE | ID: mdl-36373849

ABSTRACT

Several changes in the behavioral phenotype arise with the growth of children affected by Cornelia de Lange Syndrome (CdLS) and Rubinstein-Taybi Syndrome (RSTS). However, previous research relied on a cross-sectional study design turning into age-related comparisons of different syndromic cohorts to explore age-dependent changes. We aim to outline the variating pathways of the neuropsychiatric functioning across the lifespan in CdLS and RSTS, through the setting up of a longitudinal study design. The sample included 14 patients with CdLS and 15 with RSTS. The assessments were carried out in two different timepoints. Our findings highlight that the cognitive profile of CdLS is subjected to a worsening trend with decreasing Intellectual Quotient (IQ) scores from T0 to T1, whereas RSTS shows a stable IQ over time. Patients affected by RSTS show greater improvements compared to CdLS in communication, daily living skills, social abilities, and motor skills across the lifespan. Both syndromes report an upward trend in behavioral and emotional difficulties even if CdLS exhibit a significant and major deterioration compared to individuals with RSTS. Being aware of the early dysfunctional patterns which might pave the way for later neuropsychiatric impairments is the first step for planning preventive interventions.


Subject(s)
De Lange Syndrome , Rubinstein-Taybi Syndrome , Humans , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/psychology , Longitudinal Studies , Cross-Sectional Studies , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Phenotype
16.
Genes (Basel) ; 13(12)2022 11 23.
Article in English | MEDLINE | ID: mdl-36553464

ABSTRACT

Kyphoscoliotic Ehlers-Danlos syndrome and 17p13.3 microduplication share multiple clinical features such as muscle hypotonia, cleft palate, and growth impairment. This paper describes a patient who was first diagnosed with the duplication and a decade later also with FKBP14-kEDS. The latter was initially overlooked due to the pathogenic significance attributed to the duplication and to the fact that, at the time of the first diagnosis, this specific form of kEDS had yet to be discovered. The patient's progressive kyphoscoliosis and severe joint laxity were the clinical features that prompted the patient's physiatrist to reassess the genetic work-up. This extreme latency caused inaccurate management in the patient's follow-up program, which ultimately may have resulted in preventable clinical complications. This report underlines the importance of remaining up-to-date with patient status, reviewing old cases, and relying on specialist advice to reach a correct diagnosis.


Subject(s)
Ehlers-Danlos Syndrome , Humans , Mutation , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Muscle Hypotonia , Peptidylprolyl Isomerase/genetics
17.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430969

ABSTRACT

Rett syndrome caused by MECP2 variants is characterized by a heterogenous clinical spectrum accounted for in 60% of cases by hot-spot variants. Focusing on the most frequent variants, we generated in vitro iPSC-neurons from the blood of RTT girls with p.Arg133Cys and p.Arg255*, associated to mild and severe phenotype, respectively, and of an RTT male harboring the close to p.Arg255*, p.Gly252Argfs*7 variant. Truncated MeCP2 proteins were revealed by Western blot and immunofluorescence analysis. We compared the mutant versus control neurons at 42 days for morphological parameters and at 120 days for electrophysiology recordings, including girls' isogenic clones. A precocious reduced morphological complexity was evident in neurons with truncating variants, while in p.Arg133Cys neurons any significant differences were observed in comparison with the isogenic wild-type clones. Reduced nuclear size and branch number show up as the most robust biomarkers. Patch clamp recordings on mature neurons allowed the assessment of cell biophysical properties, V-gated currents, and spiking pattern in the mutant and control cells. Immature spiking, altered cell capacitance, and membrane resistance of RTT neurons, were particularly pronounced in the Arg255* and Gly252Argfs*7 mutants. The overall results indicate that the specific markers of in vitro cellular phenotype mirror the clinical severity and may be amenable to drug testing for translational purposes.


Subject(s)
Induced Pluripotent Stem Cells , Rett Syndrome , Male , Female , Humans , Rett Syndrome/genetics , Rett Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurons , Phenotype
18.
Nat Commun ; 13(1): 6841, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369169

ABSTRACT

Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.


Subject(s)
Neurodevelopmental Disorders , Zebrafish , Humans , Animals , Zebrafish/genetics , Zebrafish/metabolism , ADP-Ribosylation Factors/metabolism , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism
19.
Ital J Pediatr ; 48(1): 177, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183088

ABSTRACT

BACKGROUND: Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder characterized by deafness, branchiogenic malformations and renal abnormalities. Pathogenic variants in EYA1, SIX1 and SIX5 genes cause almost half of cases; copy number variants (CNV) and complex genomic rearrangements have been revealed in about 20% of patients, but they are not routinely and commonly included in the diagnostic work-up. CASE PRESENTATION: We report two unrelated patients with BOR syndrome clinical features, negative sequencing for BOR genes and the identification of a 2.65 Mb 8q13.2-13.3 microdeletion. CONCLUSIONS: We highlight the value of CNV analyses in high level of suspicion for BOR syndrome but negative sequencing for BOR genes and we propose an innovative diagnostic flow-chart to increase current detection rate. Our report confirms a mechanism of non-allelic homologous recombination as causing this recurrent 8q13.2-13.3 microdeletion. Moreover, considering the role of PRDM14 and NCOA2 genes, both involved in regulation of fertility and deleted in our patients, we suggest the necessity of a longer follow-up to monitor fertility issues or additional clinical findings.


Subject(s)
Branchio-Oto-Renal Syndrome , Branchio-Oto-Renal Syndrome/diagnosis , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/pathology , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Pedigree , Protein Tyrosine Phosphatases/genetics
20.
Skelet Muscle ; 12(1): 23, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175989

ABSTRACT

BACKGROUND: Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). CASE PRESENTATION: We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged ("megaconial") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls. CONCLUSIONS: This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.


Subject(s)
Choline Kinase , Muscular Dystrophies , Child , Choline Kinase/genetics , Choline Kinase/metabolism , Creatine Kinase , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophies/congenital , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics , Mutation , Nucleotides/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...