Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 9(86): eadh3834, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38266102

ABSTRACT

We present an avatar system designed to facilitate the embodiment of humanoid robots by human operators, validated through iCub3, a humanoid developed at the Istituto Italiano di Tecnologia. More precisely, the paper makes two contributions: First, we present the humanoid iCub3 as a robotic avatar that integrates the latest significant improvements after about 15 years of development of the iCub series. Second, we present a versatile avatar system enabling humans to embody humanoid robots encompassing aspects such as locomotion, manipulation, voice, and facial expressions with comprehensive sensory feedback including visual, auditory, haptic, weight, and touch modalities. We validated the system by implementing several avatar architecture instances, each tailored to specific requirements. First, we evaluated the optimized architecture for verbal, nonverbal, and physical interactions with a remote recipient. This testing involved the operator in Genoa and the avatar in the Biennale di Venezia, Venice-about 290 kilometers away-thus allowing the operator to visit the Italian art exhibition remotely. Second, we evaluated the optimized architecture for recipient physical collaboration and public engagement on stage, live, at the We Make Future show, a prominent world digital innovation festival. In this instance, the operator was situated in Genoa while the avatar operated in Rimini-about 300 kilometers away-interacting with a recipient who entrusted the avatar with a payload to carry on stage before an audience of approximately 2000 spectators. Third, we present the architecture implemented by the iCub Team for the All Nippon Airways (ANA) Avatar XPrize competition.


Subject(s)
Avatar , Robotics , Humans , Feedback, Sensory , Haptic Interfaces , Locomotion
2.
Sensors (Basel) ; 23(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177708

ABSTRACT

This paper proposes a novel method to reliably calibrate a pair of sensorized insoles utilizing an array of capacitive tactile pixels (taxels). A new calibration setup is introduced that is scalable and suitable for multiple kinds of wearable sensors and a procedure for the simultaneous calibration of each of the sensors in the insoles is presented. The calibration relies on a two-step optimization algorithm that, firstly, enables determination of a relevant set of mathematical models based on the instantaneous measurement of the taxels alone, and, then, expands these models to include the relevant portion of the time history of the system. By comparing the resulting models with our previous work on the same hardware, we demonstrate the effectiveness of the novel method both in terms of increased ability to cope with the non-linear characteristics of the sensors and increased pressure ranges achieved during the experiments performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...