Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Loss Prev Process Ind ; 70: 104393, 2021 May.
Article in English | MEDLINE | ID: mdl-36569265

ABSTRACT

The paper discusses the impact of the COVID-19 pandemic on the Italian chemical and process industries, where Directive 2012/18/EU Seveso III, for the control of Major Accident Hazard (MAH), is enforced. The Safety Management System (SMS) for the control of MAH, which has been mandatory for 20 years in Italian Seveso Establishments, has been highly stressed by the external pressure, related in some way to the COVID-19 pandemic. Fairly, most companies, in particular in oil and gas sectors, have demonstrated an adequate capability to reconcile operation continuity and health requirements. This experience is providing the establishment operators and the regulators with valuable suggestions for the improvements of the SMS-MAH. Within this framework, an innovative organisational resilience model is proposed, aiming at the development of a higher capability to face future new crisis. The current SMS-MAH already includes some basic pillars to enhance resilience, which were valuable during the pandemic crisis, but a full and rationale development is still needed. Starting from the first pandemic phase experience, this paper presents a novel tool to assess the degree of "resilience" of a SMS-MAH. It is based on a questionnaire, featuring 25 questions grouped into eight items, according to the typical SMS-MAH structure. A two level AHP model has been developed in order to define the weights to be assigned to each point. The AHP panel included industrial practitioners, regulators, authorities and researchers. The results are based on the COVID-19 experience and consequently the developed model is tailored to face health emergencies, but the approach may be easily transferred to other external crises.

2.
J Environ Manage ; 204(Pt 1): 637-650, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28942192

ABSTRACT

Emissions due to ship-loading of hydrocarbons are currently not addressed neither by the Directive on the integrated pollution prevention or by other environmental regulations. The scope of this study is to point towards the environmental and safety concerns associated with such emissions, even if proper attention has not been given to this issue until now. In order to achieve this goal, the modelling of the emission volatile organic compounds (VOC), due to ship-load operations at refineries has been made by means of the definition of a simulation procedure which includes a proper treatment of the hours of calm. Afterwards, a quantitative analysis of VOC dispersion for an Italian case-study is presented with the primary aims: (i) to develop and verify the validity of the approach for the modelling of the emission sources and of the diffusion of these contaminants into the atmosphere by a proper treatment of the hours of calm and (ii) to identify their contribution to the total VOC emitted in a typical refinery. The calculated iso-concentration contours have also been drawn on a map and allowed the identification of critical areas for people protecting by the adoption of abatement solutions.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Hydrocarbons/analysis , Petroleum/analysis , Volatile Organic Compounds , Environmental Monitoring/methods , Ships , Volatile Organic Compounds/analysis
3.
Ecotoxicology ; 26(2): 250-260, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28108889

ABSTRACT

In this study we analyzed Hg and Se concentrations in dolphin brain tissues of fifteen specimens of striped dolphin (Stenella coeruleoalba) and eight specimens of bottlenose dolphin (Tursiops truncatus) stranded in the Tyrrhenian and Adriatic Seas, in order to assess the toxicological risks associated with Hg exposure. High Hg concentrations were found in brain tissues of both analyzed specie (1.86-243 mg/kg dw for striped dolphin and 2.1-98.7 mg/kg dw for bottlenose dolphin), exceeding levels associated with marine mammals neurotoxicity. Althougth the results clearly suggest that the protective effects of Se against Hg toxicity occur in cetaceans' brain tissues, a molar excess of mercury with respect to selenium was found, particularly in adult specimens of Stenella coeruleoalba. On contrary, negligible neurotoxicological risks were found for Tursiops truncatus specimens, due to detoxification processes. Data obtained allowed to prove a more marked neurotoxicological risk for adult specimens of Stenella coeruleoalba in both Tyrrhenian and Adriatic Seas.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Mercury/metabolism , Selenium/metabolism , Stenella/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brain/metabolism , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...