Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 76(9): 882-90, 1998 Sep.
Article in English | MEDLINE | ID: mdl-10066138

ABSTRACT

HCO3(-) secretion across in vitro duodenal mucosa of Rana catesbeiana was investigated under baseline conditions and during secretory stimulation. Baseline secretion was abolished by removal of CO2-HCO3(-)and reduced approximately 60% by removal of nutrient Na+, but was not sensitive to changes in Cl- or K+. Baseline secretion was not directly altered by exposure to 10(-3) M amiloride or 10(-3) M H2DIDS (dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid) in the nutrient solution and only mildly reduced by acetazolamide. Following removal and restoration of Na+, recovery of secretion was impaired by exposure to acetazolamide (5 x 10(-4) M) or H2DIDS (5 x 10(-4) M) in the nutrient solution. Secretion stimulated by glucagon (10(-6) M) or 16,16-dimethyl prostaglandin E2 (10 microg.mL(-1)) was markedly attenuated by removal of Na+ or by exposure to H2DIDS, but secretion was not altered by acetazolamide (5 x 10(-4) M) or nutrient amiloride (1 mM). Thus, the HCO3(-) that is secreted under nonstimulated conditions derives partly from basolateral Na(+)-dependent uptake and partly from cellular CO2 hydration. Secretagogue-stimulated secretion by duodenal surface epithelium depends on stilbene-sensitive Na+(HCO3(-))n uptake across the basolateral membrane.


Subject(s)
Bicarbonates/metabolism , Duodenum/metabolism , Sodium/physiology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Amiloride/pharmacology , Animals , Carbonic Anhydrases/physiology , Dinoprostone/pharmacology , Glucagon/pharmacology , Ion Transport , Rana catesbeiana
SELECTION OF CITATIONS
SEARCH DETAIL