Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472376

ABSTRACT

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Subject(s)
Arabidopsis , Solanum tuberosum , Plant Breeding , Pollen/genetics , Genotype , Arabidopsis/genetics , Meiosis
2.
Genes (Basel) ; 11(8)2020 08 04.
Article in English | MEDLINE | ID: mdl-32759792

ABSTRACT

Zymoseptoria tritici is the causative fungal pathogen of septoria tritici blotch (STB) disease of wheat (Triticum aestivum L.) that continuously threatens wheat crops in Ireland and throughout Europe. Under favorable conditions, STB can cause up to 50% yield losses if left untreated. STB is commonly controlled with fungicides; however, a combination of Z. tritici populations developing fungicide resistance and increased restrictions on fungicide use in the EU has led to farmers relying on fewer active substances. Consequently, this serves to drive the emergence of Z. tritici resistance against the remaining chemistries. In response, the use of resistant wheat varieties provides a more sustainable disease management strategy. However, the number of varieties offering an adequate level of resistance against STB is limited. Therefore, new sources of resistance or improved stacking of existing resistance loci are needed to develop varieties with superior agronomic performance. Here, we identified quantitative trait loci (QTL) for STB resistance in the eight-founder "NIAB Elite MAGIC" winter wheat population. The population was screened for STB response in the field under natural infection for three seasons from 2016 to 2018. Twenty-five QTL associated with STB resistance were identified in total. QTL either co-located with previously reported QTL or represent new loci underpinning STB resistance. The genomic regions identified and the linked genetic markers serve as useful resources for STB resistance breeding, supporting rapid selection of favorable alleles for the breeding of new wheat cultivars with improved STB resistance.


Subject(s)
Disease Resistance , Quantitative Trait Loci , Triticum/genetics , Ascomycota/pathogenicity , Plant Breeding , Polymorphism, Single Nucleotide , Triticum/immunology , Triticum/microbiology
3.
Genes (Basel) ; 11(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32630103

ABSTRACT

Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.


Subject(s)
Disease Resistance , Quantitative Trait Loci , Solanum/genetics , Chromosomes, Plant/genetics , Phytophthora/pathogenicity , Plant Breeding/methods , Polymorphism, Single Nucleotide , Solanum/immunology , Solanum/microbiology
4.
Front Plant Sci ; 9: 717, 2018.
Article in English | MEDLINE | ID: mdl-29904390

ABSTRACT

To address the lack of a truly portable, universal reference mapping population for perennial ryegrass, we have been developing a recombinant inbred line (RIL) mapping population of perennial ryegrass derived via single seed descent from a well-characterized F2 mapping population based on genetically distinct inbred parents in which the natural self-incompatibility (SI) system of perennial ryegrass has been overcome. We examined whether it is possible to create a genotyping by sequencing (GBS) based genetic linkage map in a small population of the F6 generation of this population. We used 41 F6 genotypes for GBS with PstI/MspI-based libraries. We successfully developed a genetic linkage map comprising 6074 SNP markers, placing a further 22080 presence and absence variation (PAV) markers on the map. We examined the resulting genetic map for general and RIL specific features. Overall segregation distortion levels were similar to those experienced in the F2 generation, but segregation distortion was reduced on linkage group 6 and increased on linkage group 7. Residual heterozygosity in the F6 generation was observed at a level of 5.4%. There was a high proportion of chromosomes (30%) exhibiting the intact haplotype of the original inbred parents of the F1 genotype from which the population is derived, pointing to a tendency for chromosomes to assort without recombining. This could affect the applicability of these lines and might make them more suitable for situations where repressed recombination is an advantage. Inter- and intra-chromosomal linkage disequilibrium (LD) analysis suggested that the map order was robust. We conclude that this RIL population, and subsequent F7 and F8 generations will be useful for genetic analysis and phenotyping of agronomic and biological important traits in perennial ryegrass.

5.
BMC Genet ; 19(1): 35, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843601

ABSTRACT

BACKGROUND: Genomic selection (GS) can accelerate genetic gains in breeding programmes by reducing the time it takes to complete a cycle of selection. Puccinia coronata f. sp lolli (crown rust) is one of the most widespread diseases of perennial ryegrass and can lead to reductions in yield, persistency and nutritional value. Here, we used a large perennial ryegrass population to assess the accuracy of using genome wide markers to predict crown rust resistance and to investigate the factors affecting predictive ability. RESULTS: Using these data, predictive ability for crown rust resistance in the complete population reached a maximum of 0.52. Much of the predictive ability resulted from the ability of markers to capture genetic relationships among families within the training set, and reducing the marker density had little impact on predictive ability. Using permutation based variable importance measure and genome wide association studies (GWAS) to identify and rank markers enabled the identification of a small subset of SNPs that could achieve predictive abilities close to those achieved using the complete marker set. CONCLUSION: Using a GWAS to identify and rank markers enabled a small panel of markers to be identified that could achieve higher predictive ability than the same number of randomly selected markers, and predictive abilities close to those achieved with the entire marker set. This was particularly evident in a sub-population characterised by having on-average higher genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected markers over random markers suggests they are in LD with QTL. Accuracy due to genetic relationships will decay rapidly over generations whereas accuracy due to LD will persist, which is advantageous for practical breeding applications.


Subject(s)
Basidiomycota/pathogenicity , Disease Resistance/genetics , Lolium/genetics , Lolium/microbiology , Plant Diseases/genetics , Genetic Markers , Genome-Wide Association Study/methods , Plant Diseases/microbiology , Selection, Genetic
6.
Theor Appl Genet ; 131(4): 929-945, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29307117

ABSTRACT

KEY MESSAGE: Cd is a toxic metal, whilst Zn is an essential for plant and human health. Both can accumulate in potato tubers. We examine the genetic control of this process. The aim of this study was to map quantitative trait loci (QTLs) influencing tuber concentrations of cadmium (Cd) and zinc (Zn). We developed a segregating population comprising 188 F1 progeny derived from crossing two tetraploid cultivars exhibiting divergent tuber-Cd-accumulation phenotypes. These progeny were genotyped using the SolCap 8303 SNP array, and evaluated for Cd, Zn, and maturity-related traits. Linkage and QTL mapping were performed using TetraploidSNPMap software, which incorporates all allele dosage information. The final genetic map comprised 3755 SNP markers with average marker density of 2.94 per cM. Tuber-Cd and Zn concentrations were measured in the segregating population over 2 years. QTL mapping identified four loci for tuber-Cd concentration on chromosomes 3, 5, 6, and 7, which explained genetic variance ranging from 5 to 33%, and five loci for tuber-Zn concentration on chromosome 1, 3, 5, and, 6 explaining from 5 to 38% of genetic variance. Among the QTL identified for tuber-Cd concentration, three loci coincided with tuber-Zn concentration. The largest effect QTL for both tuber-Cd and Zn concentration coincided with the maturity locus on chromosome 5 where earliness was associated with increased tuber concentration of both metals. Coincident minor-effect QTL for Cd and Zn sharing the same direction of effect was also found on chromosomes 3 and 6, and these were unrelated to maturity The results indicate partially overlapping genetic control of tuber-Cd and Zn concentration in the cross, involving both maturity-related and non-maturity-related mechanisms.


Subject(s)
Cadmium/analysis , Plant Tubers/chemistry , Quantitative Trait Loci , Solanum tuberosum/genetics , Zinc/analysis , Chromosome Mapping , Crosses, Genetic , Genetic Linkage , Genotype , Phenotype , Polymorphism, Single Nucleotide , Solanum tuberosum/chemistry , Tetraploidy
7.
BMC Genet ; 18(1): 84, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29017444

ABSTRACT

BACKGROUND: Recent advances in the mapping of biochemical traits have been reported in Lolium perenne. Although the mapped traits, including individual sugars and fatty acids, contribute greatly towards ruminant productivity, organic acids and amino acids have been largely understudied despite their influence on the ruminal microbiome. RESULTS: In this study, we used a targeted gas-chromatography mass spectrometry (GC-MS) approach to profile the levels of 25 polar metabolites from different classes (sugars, amino acids, phenolic acids, organic acids and other nitrogen-containing compounds) present in a L. perenne F2 population consisting of 325 individuals. A quantitative trait (QTL) mapping approach was applied and successfully identified QTLs regulating seven of those polar metabolites (L-serine, L-leucine, glucose, fructose, myo-inositol, citric acid and 2, 3-hydroxypropanoic acid).Two QTL mapping approaches were carried out using SNP markers on about half of the population only and an imputation approach using SNP and DArT markers on the entire population. The imputation approach confirmed the four QTLs found in the SNP-only analysis and identified a further seven QTLs. CONCLUSIONS: These results highlight the potential of utilising molecular assisted breeding in perennial ryegrass to modulate a range of biochemical quality traits with downstream effects in livestock productivity and ruminal digestion.


Subject(s)
Chromosome Mapping/methods , Lolium/genetics , Metabolomics/methods , Plant Breeding/methods , Quantitative Trait Loci , Genes, Plant , Genetic Linkage , Lolium/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
8.
Environ Sci Pollut Res Int ; 24(35): 27384-27391, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28975479

ABSTRACT

Potatoes grown in soil with high Cd concentrations can accumulate high levels of Cd in the tubers. Although there is significant environmental variation involved in the trait of crop uptake of Cd, there are also distinctive cultivar differences. In order to understand this differential Cd accumulation mechanism, two potato cultivars were chosen that accumulate high and low levels of Cd in tubers. The patterns of Cd concentration, Cd content and dry weight accumulation of the two cultivars were examined at different stages of plant growth. The data suggest that differences in total Cd uptake and in Cd partitioning among organs are the mechanisms governing differential Cd-tuber accumulation in the two cultivars. The low tuber-Cd accumulator exhibited lower root-to-shoot and shoot-to-tuber translocation driven by higher root and shoot biomass that retained more Cd in roots and shoots, respectively, reducing its movement to the tubers. Higher remobilization and more efficient tuber loading was observed in the high tuber-Cd accumulator, indicating that remobilization of Cd from leaves to tubers was a major factor, not only in tuber-Cd loading, but also in the establishment of differential tuber-Cd levels. Regardless of cultivar differences, the concentration of Cd in the tuber was very low compared to that in other organs suggesting that, despite its high phloem mobility, Cd tends to be sequestered in the shoots.


Subject(s)
Cadmium/analysis , Plant Tubers/drug effects , Soil Pollutants/analysis , Solanum tuberosum/drug effects , Biological Transport , Biomass , Phenotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Tubers/metabolism , Soil/chemistry , Solanum tuberosum/metabolism
9.
Sci Rep ; 7(1): 3566, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620209

ABSTRACT

Prior knowledge on heading date enables the selection of parents of synthetic cultivars that are well matched with respect to time of heading, which is essential to ensure plants put together will cross pollinate. Heading date of individual plants can be determined via direct phenotyping, which has a time and labour cost. It can also be inferred from family means, although the spread in days to heading within families demands roguing in first generation synthetics. Another option is to predict heading date from molecular markers. In this study we used a large training population consisting of individual plants to develop equations to predict heading date from marker genotypes. Using permutation-based variable selection measures we reduced the marker set from 217,563 to 50 without impacting the predictive ability. Opportunities exist to develop a cheap assay to sequence a small number of regions in linkage disequilibrium with heading date QTL in thousands of samples. Simultaneous use of these markers in non-linkage based marker-assisted selection approaches, such as paternity testing, should enhance the utility of such an approach.


Subject(s)
Evolution, Molecular , Lolium/genetics , Polymorphism, Single Nucleotide , Algorithms , Genetics, Population , Genome-Wide Association Study , Genotype , Models, Genetic , Phenotype , Quantitative Trait Loci
10.
BMC Plant Biol ; 16(1): 160, 2016 07 16.
Article in English | MEDLINE | ID: mdl-27422157

ABSTRACT

BACKGROUND: Heading and aftermath heading are important traits in perennial ryegrass because they impact forage quality. So far, genome-wide association analyses in this major forage species have only identified a small number of genetic variants associated with heading date that overall explained little of the variation. Some possible reasons include rare alleles with large phenotypic affects, allelic heterogeneity, or insufficient marker density. We established a genome-wide association panel with multiple genotypes from multiple full-sib families. This ensured alleles were present at the frequency needed to have sufficient statistical power to identify associations. We genotyped the panel via partial genome sequencing and performed genome-wide association analyses with multi-year phenotype data collected for heading date, and aftermath heading. RESULTS: Genome wide association using a mixed linear model failed to identify any variants significantly associated with heading date or aftermath heading. Our failure to identify associations for these traits is likely due to the extremely low linkage disequilibrium we observed in this population. However, using single marker analysis within each full-sib family we could identify markers and genomic regions associated with heading and aftermath heading. Using the ryegrass genome we identified putative orthologs of key heading genes, some of which were located in regions of marker-trait associations. CONCLUSION: Given the very low levels of LD, genome wide association studies in perennial ryegrass populations are going to require very high SNP densities. Single marker analysis within full-sibs enabled us to identify significant marker-trait associations. One of these markers anchored proximal to a putative ortholog of TFL1, homologues of which have been shown to play a key role in continuous heading of some members of the rose family, Rosaceae.


Subject(s)
Lolium/genetics , Alleles , Chromosome Mapping , Genetic Markers , Genetic Variation , Genome, Plant , Genome-Wide Association Study , Genomics , Genotype , Lolium/classification , Phylogeny
11.
Ann Bot ; 118(1): 71-87, 2016 07.
Article in English | MEDLINE | ID: mdl-27268483

ABSTRACT

BACKGROUND AND AIMS: High density genetic linkage maps that are extensively anchored to assembled genome sequences of the organism in question are extremely useful in gene discovery. To facilitate this process in perennial ryegrass (Lolium perenne L.), a high density single nucleotide polymorphism (SNP)- and presence/absence variant (PAV)-based genetic linkage map has been developed in an F2 mapping population that has been used as a reference population in numerous studies. To provide a reference sequence to which to align genotyping by sequencing (GBS) reads, a shotgun assembly of one of the grandparents of the population, a tenth-generation inbred line, was created using Illumina-based sequencing. METHODS: The assembly was based on paired-end Illumina reads, scaffolded by mate pair and long jumping distance reads in the range of 3-40 kb, with >200-fold initial genome coverage. A total of 169 individuals from an F2 mapping population were used to construct PstI-based GBS libraries tagged with unique 4-9 nucleotide barcodes, resulting in 284 million reads, with approx. 1·6 million reads per individual. A bioinformatics pipeline was employed to identify both SNPs and PAVs. A core genetic map was generated using high confidence SNPs, to which lower confidence SNPs and PAVs were subsequently fitted in a straightforward binning approach. KEY RESULTS: The assembly comprises 424 750 scaffolds, covering 1·11 Gbp of the 2·5 Gbp perennial ryegrass genome, with a scaffold N50 of 25 212 bp and a contig N50 of 3790 bp. It is available for download, and access to a genome browser has been provided. Comparison of the assembly with available transcript and gene model data sets for perennial ryegrass indicates that approx. 570 Mbp of the gene-rich portion of the genome has been captured. An ultra-high density genetic linkage map with 3092 SNPs and 7260 PAVs was developed, anchoring just over 200 Mb of the reference assembly. CONCLUSIONS: The combined genetic map and assembly, combined with another recently released genome assembly, represent a significant resource for the perennial ryegrass genetics community.


Subject(s)
Chromosome Mapping , Lolium/genetics , Polymorphism, Single Nucleotide , Genetic Linkage , Genome, Plant , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing , Homozygote
12.
BMC Plant Biol ; 15: 255, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26496718

ABSTRACT

BACKGROUND: In plant genomes, NB-LRR based resistance (R) genes tend to occur in clusters of variable size in a relatively small number of genomic regions. R-gene sequences mostly differentiate by accumulating point mutations and gene conversion events. Potato and tomato chromosome 4 harbours a syntenic R-gene locus (known as the R2 locus in potato) that has mainly been examined in central American/Mexican wild potato species on the basis of its contribution to resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. Evidence to date indicates the occurrence of a fast evolutionary mode characterized by gene conversion events at the locus in these genotypes. RESULTS: A physical map of the R2 locus was developed for three Solanum tuberosum genotypes and used to identify the tomato syntenic sequence. Functional annotation of the locus revealed the presence of numerous resistance gene homologs (RGHs) belonging to the R2 gene family (R2GHs) organized into a total of 4 discrete physical clusters, three of which were conserved across S. tuberosum and tomato. Phylogenetic analysis showed clear orthology/paralogy relationships between S. tuberosum R2GHs but not in R2GHs cloned from Solanum wild species. This study confirmed that, in contrast to the wild species R2GHs, which have evolved through extensive sequence exchanges between paralogs, gene conversion was not a major force for differentiation in S. tuberosum R2GHs, and orthology/paralogy relationships have been maintained via a slow accumulation of point mutations in these genotypes. CONCLUSIONS: S. tuberosum and Solanum lycopersicum R2GHs evolved mostly through duplication and deletion events, followed by gradual accumulation of mutations. Conversely, widespread gene conversion is the major evolutionary force that has shaped the locus in Mexican wild potato species. We conclude that different selective forces shaped the evolution of the R2 locus in these lineages and that co-evolution with a pathogen steered selection on different evolutionary paths.


Subject(s)
Chromosomes, Plant/genetics , Disease Resistance/genetics , Evolution, Molecular , Genetic Loci , Phylogeny , Plant Diseases/genetics , Solanum lycopersicum/genetics , Solanum tuberosum/genetics , Conserved Sequence , Genotype , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA
13.
G3 (Bethesda) ; 3(11): 2031-47, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24062527

ABSTRACT

The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".


Subject(s)
Chromosome Mapping/standards , Chromosomes, Plant/genetics , Solanum tuberosum/genetics , Biomarkers/metabolism , Chromosomes, Plant/metabolism , Genome, Plant , Internet , User-Computer Interface
14.
BMC Genomics ; 14: 100, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23402685

ABSTRACT

BACKGROUND: White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. RESULTS: We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. CONCLUSIONS: In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for white clover genomics and genetics studies. We discuss the potential to extend the analysis to identify a "core set" of ancestrally derived homeolog specific variants in white clover.


Subject(s)
Alleles , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, RNA/methods , Sequence Homology, Nucleic Acid , Tetraploidy , Trifolium/genetics , Expressed Sequence Tags/metabolism , Haplotypes , Homozygote , Inbreeding , RNA, Messenger/genetics
15.
Genome Res ; 20(12): 1700-10, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20978141

ABSTRACT

Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.


Subject(s)
Evolution, Molecular , Genes, Plant/genetics , Genetic Variation , Genome, Chloroplast/genetics , Lathyrus/genetics , Mutation/genetics , Photosystem I Protein Complex/genetics , Amino Acid Sequence , Base Sequence , DNA Primers/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
16.
Theor Appl Genet ; 121(3): 567-76, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20383486

ABSTRACT

White clover (Trifolium repens L.) is a forage legume of considerable economic importance in temperate agricultural systems. It has a strong self-incompatibility system. The molecular basis of self-incompatibility in T. repens is unknown, but it is under the control of a single locus, which is expressed gametophytically. To locate the self-incompatibility locus (S locus) in T. repens, we carried out cross-pollination experiments in an F(1) mapping population and constructed a genetic linkage map using amplified fragment length polymorphism and simple sequence repeat markers. As the first step in a map-based cloning strategy, we locate for the first time the S locus in T. repens on a genetic linkage map, on the homoeologous linkage group pair 1 (E), which is broadly syntenic to Medicago truncatula L. chromosome 1. On the basis of this syntenic relationship, the possibility that the S locus may or may not possess an S-RNase gene is discussed.


Subject(s)
Chromosome Mapping , Genetic Linkage/genetics , Genetic Markers/genetics , Trifolium/genetics , Amplified Fragment Length Polymorphism Analysis , Microsatellite Repeats , Synteny
17.
Theor Appl Genet ; 120(3): 679-89, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19882336

ABSTRACT

Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.


Subject(s)
Breeding/methods , Immunity, Innate/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Tylenchoidea/physiology , Animals , Chromosome Mapping , Chromosome Segregation , Chromosomes, Plant/genetics , Genetic Markers , Microsatellite Repeats/genetics , Plant Diseases/parasitology , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Reproducibility of Results , Solanum tuberosum/immunology
18.
Genome ; 50(4): 412-21, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17546099

ABSTRACT

White clover (Trifolium repens L.) is a forage legume widely used in combination with grass in pastures because of its ability to fix nitrogen. We have constructed a bacterial artificial chromosome (BAC) library of an advanced breeding line of white clover. The library contains 37 248 clones with an average insert size of approximately 85 kb, representing an approximate 3-fold coverage of the white clover genome based on an estimated genome size of 960 Mb. The BAC library was pooled and screened by polymerase chain reaction (PCR) amplification using both white clover microsatellites and PCR-based markers derived from Medicago truncatula, resulting in an average of 6 hits per marker; this supports the estimated 3-fold genome coverage in this allotetraploid species. PCR-based screening of 766 clones with a multiplex set of chloroplast primers showed that only 0.5% of BAC clones contained chloroplast-derived inserts. The library was further evaluated by sequencing both ends of 724 of the clover BACs. These were analysed with respect to their sequence content and their homology to the contents of a range of plant gene, expressed sequence tag, and repeat element databases. Forty-three microsatellites were discovered in the BAC-end sequences (BESs) and investigated as potential genetic markers in white clover. The BESs were also compared with the partially sequenced genome of the model legume M. truncatula with the specific intention of identifying putative comparative-tile BACs, which represent potential regions of microsynteny between the 2 species; 14 such BACs were discovered. The results suggest that a large-scale BAC-end sequencing strategy has the potential to anchor a significant proportion of the genome of white clover onto the gene-space sequence of M. truncatula.


Subject(s)
Chromosomes, Artificial, Bacterial , Gene Library , Sequence Analysis, DNA , Synteny/genetics , Trifolium/genetics , Medicago truncatula/genetics
19.
Trends Plant Sci ; 11(5): 254-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16621672

ABSTRACT

Biotechnology-based tools are now widely used to enhance and expand the traditional remit of potato in food production. By modifying its functionality, the capacity of the potato to produce, for example, therapeutic or industrial compounds is now a reality, and its ability to resist disease can also be radically improved. Two developments have been crucial to expanding the role of potato: the recent advances in the fields of structural and functional potato genomics and the ability to integrate genes of interest into the potato genome. In this review we discuss how both developments have diversified the remit of this crop.


Subject(s)
Biotechnology/methods , Crops, Agricultural/genetics , Solanum tuberosum/genetics , Breeding/methods , Crops, Agricultural/growth & development , Genetic Engineering , Genome, Plant , Genomics , Immunity, Innate/genetics , Solanum tuberosum/growth & development , Solanum tuberosum/physiology
20.
Genetics ; 173(2): 1075-87, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16582432

ABSTRACT

An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).


Subject(s)
Genome, Plant , Solanum tuberosum/genetics , Chromosome Mapping , Diploidy , Genetic Markers , Heterozygote , Meiosis/genetics , Quantitative Trait Loci , Recombination, Genetic , Restriction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...