Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Methods Mol Biol ; 2628: 413-438, 2023.
Article in English | MEDLINE | ID: mdl-36781800

ABSTRACT

Antibody (AB) testing or serotesting for reactive ABs against antigenic proteins is broadly used. Parallel examination of many antigens is of high interest to identify autoantibodies (AAB) or differential antigenic reactivities in many biological settings like allergy and infectious autoimmune, cancerous, or systemic disease. The resulting AAB profiles can be used for diagnosis, prognosis, and monitoring of such conditions. Protein microarrays have been used for AB profiling over the past decade but show some significant limitations which make them unsuitable for clinical applications. Alternative multiplexing platforms such as bead arrays were shown to provide a versatile tool for the confirmation and efficient analysis of high numbers of biological samples. Luminex' bead-based xMAP technology combines advantages such as multiplexing and lower demand for sample volume and at the same time overcomes the challenges of microarrays. It works faster, shows better antigen stability, is more reproducible, and allows the analysis of up to 500 analytes in one sample well. In this chapter we introduce our established workflow for the use of the xMAP technology for AB profiling including an overview of the method principle and protocols for the covalent immobilization of proteins to the MagPlex beads, confirmation of protein coupling, the execution of a multiplexed bead-based protein immunoassay, and subsequent data handling.


Subject(s)
Antigens , Serum , Immunologic Tests , Autoantibodies , Immunoassay/methods
2.
Methods Mol Biol ; 2628: 505-533, 2023.
Article in English | MEDLINE | ID: mdl-36781804

ABSTRACT

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.


Subject(s)
Antibodies , Serum , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay/methods , Serum/chemistry , Peptides
3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674927

ABSTRACT

Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.


Subject(s)
Glioblastoma , Meningeal Neoplasms , Meningioma , Humans , Meningioma/genetics , Antibodies , Antigens, Neoplasm , Meningeal Neoplasms/genetics
4.
Biotechniques ; 72(4): 134-142, 2022 04.
Article in English | MEDLINE | ID: mdl-35234537

ABSTRACT

ELISA is the current standard for (auto)antibody diagnostics. Once established, ELISA protocols can be easily adapted for novel antigens; however, peptide-based protocols are rarely available. Herein the authors describe the results of a technical investigation of an indirect ELISA protocol using peptides conjugated onto a protein carrier based on click chemistry and immobilized in standard plastics. The authors compared this approach with the common biotin-avidin system and obtained a slightly improved limit of detection for purified IgG of 25-100 ng/well compared with 25-1000 ng/well. Reproducibility and stability of the methodological approach were conducted for further technical characterization. Indirect ELISA using immunoreactive peptides conjugated to bovine serum albumin offers a reliable method that is complementary to standard plastics and plate readers.


Subject(s)
Click Chemistry , Peptides , Biotin/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Peptides/metabolism , Plastics , Reproducibility of Results
5.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209238

ABSTRACT

For the identification of antigenic protein biomarkers for rheumatoid arthritis (RA), we conducted IgG profiling on high density protein microarrays. Plasma IgG of 96 human samples (healthy controls, osteoarthritis, seropositive and seronegative RA, n = 24 each) and time-series plasma of a pristane-induced arthritis (PIA) rat model (n = 24 total) were probed on AIT's 16k protein microarray. To investigate the analogy of underlying disease pathways, differential reactivity analysis was conducted. A total of n = 602 differentially reactive antigens (DIRAGs) at a significance cutoff of p < 0.05 were identified between seropositive and seronegative RA for the human samples. Correlation with the clinical disease activity index revealed an inverse correlation of antibodies against self-proteins found in pathways relevant for antigen presentation and immune regulation. The PIA model showed n = 1291 significant DIRAGs within acute disease. Significant DIRAGs for (I) seropositive, (II) seronegative and (III) PIA were subjected to the Reactome pathway browser which also revealed pathways relevant for antigen presentation and immune regulation; of these, seven overlapping pathways had high significance. We therefore conclude that the PIA model reflects the biological similarities of the disease pathogenesis. Our data show that protein array analysis can elucidate biological differences and pathways relevant in disease as well be a useful additional layer of omics information.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/etiology , Autoantibodies/immunology , Autoimmunity , Biomarkers , Animals , Autoantibodies/blood , Autoantigens/immunology , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Protein Array Analysis , Rats , Severity of Illness Index
6.
EBioMedicine ; 67: 103348, 2021 May.
Article in English | MEDLINE | ID: mdl-33906067

ABSTRACT

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Binding Sites , CHO Cells , COVID-19/immunology , Cricetulus , Early Diagnosis , HEK293 Cells , Humans , Immunoglobulin G/blood , Middle Aged , Sensitivity and Specificity , Young Adult
7.
PLoS One ; 15(2): e0228615, 2020.
Article in English | MEDLINE | ID: mdl-32050001

ABSTRACT

To date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0·01 significance level (FDR<0·1) of the univariate test between the UC and the non-UC group. CD99 emerged as a biomarker to discriminate between both groups (p = 1e-04, AUC = 0·8). In addition, cytokines, chemokines and growth factors were analyzed by Olink's Proseek® Multiplex Inflammation-I 96×96 immuno-qPCR assay and 31 genes were significant at the nominal 0.05 level of the univariate test to discriminate between UC and non-UC donors. MCP-3, HGF and CXCL-9 were identified as the most significant markers to discriminate between UC patients with clinically active and inactive disease. Levels of CXCL10 (cor = 0.3; p = 0.02), CCL25 (cor = 0.25; p = 0.04) and CCL28 (cor = 0.3; p = 0.02) correlated positively with levels of anti CD99. To assess whether autoantibodies are detectable prior to diagnosis with UC, sera from nine donors at two different time points (T-early, median 21 months and T-late, median 6 months) were analyzed. 1201 features were identified with higher reactivity in samples at time points closer to clinical UC presentation. In vitro, additional challenge of peripheral mononuclear cells with CD99 did not activate CD4+ T cells but induced the secretion of IL-10 (-CD99: 20.21±20.25; +CD99: 130.20±89.55; mean ±sd; p = 0.015). To examine the effect of CD99 in vivo, inflammation and autoantibody levels were examined in NOD/ScidIL2Rγnull mice reconstituted with PBMC from UC donors (NSG-UC). Additional challenge with CD99 aggravated disease symptoms and pathological phenotype as indicated by the elevated clinical score (-CD99: 1·85 ± 1·94; +CD99: 4·25 ± 1·48) and histological score (-CD99: 2·16 ± 0·83; +CD99: 3·15 ± 1·16, p = 0·01). Furthermore, levels of anti-CD99 antibodies increased (Control: 398 ± 323; mean MFI ± sd; Ethanol + PBS: 358 ±316; Ethanol + CD99: 1363 ± 1336; Control versus Ethanol + CD99: p = 0.03). In a highly inflammatory environment, frequencies of pro-inflammatory M1 monocytes (CD14+ CD64+: unchallenged 8.09±4.72; challenged 14.2±8.62; p = 0.07; CD14+ CD1a+: unchallenged 16.29 ±6.97; challenged 43.81±14.4, p = 0.0003) increased and levels of autoantibodies in serum decreased in the NSG-UC mouse model. These results suggest that autoantibodies are potent biomarkers to discriminate between UC and non-UC and indicate risk to develop UC. In an inflammatory environment, auto-antibodies may promote the pathological phenotype by activating M1 monocytes in the NSG-UC animal model and also in patients with UC.


Subject(s)
Autoantibodies/blood , Colitis, Ulcerative/diagnosis , Adult , Aged , Animals , Autoantibodies/immunology , Biomarkers/blood , Cells, Cultured , Colitis, Ulcerative/blood , Colitis, Ulcerative/immunology , Cytokines/blood , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged
8.
PLoS One ; 10(6): e0128235, 2015.
Article in English | MEDLINE | ID: mdl-26039628

ABSTRACT

Although an increased level of the prostate-specific antigen can be an indication for prostate cancer, other reasons often lead to a high rate of false positive results. Therefore, an additional serological screening of autoantibodies in patients' sera could improve the detection of prostate cancer. We performed protein macroarray screening with sera from 49 prostate cancer patients, 70 patients with benign prostatic hyperplasia and 28 healthy controls and compared the autoimmune response in those groups. We were able to distinguish prostate cancer patients from normal controls with an accuracy of 83.2%, patients with benign prostatic hyperplasia from normal controls with an accuracy of 86.0% and prostate cancer patients from patients with benign prostatic hyperplasia with an accuracy of 70.3%. Combining seroreactivity pattern with a PSA level of higher than 4.0 ng/ml this classification could be improved to an accuracy of 84.1%. For selected proteins we were able to confirm the differential expression by using luminex on 84 samples. We provide a minimally invasive serological method to reduce false positive results in detection of prostate cancer and according to PSA screening to distinguish men with prostate cancer from men with benign prostatic hyperplasia.


Subject(s)
Autoantibodies/blood , Prostate-Specific Antigen/blood , Prostatic Hyperplasia/blood , Prostatic Hyperplasia/diagnosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Aged , Aged, 80 and over , Area Under Curve , Case-Control Studies , Clone Cells , Diagnosis, Differential , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...