Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 41(17): 5377-90, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22450875

ABSTRACT

The consecutive syntheses of imidazoles 1-(4-X-C(6)H(4))-4,5-R(2)-(c)C(3)HN(2) (3a, X = Br, R = H; 3b, X = I, R = Me; 3c, X = H, R = Me; 5, X = Fc, R = H; 7, X = C≡CFc, R = H; 9, X = C(6)H(5), R = Me; Fc = Fe(η(5)-C(5)H(4))(η(5)-C(5)H(5))), phosphino imidazoles 1-(4-X-C(6)H(4))-2-PR'(2)-4,5-R(2)-(c)C(3)N(2) (11a-k; X = Br, I, Fc, FcC≡C, Ph; R = H, Me; R' = Ph, (c)C(6)H(11), (c)C(4)H(3)O), imidazolium salts [1-(4-X-C(6)H(4))-3-R''-4,5-R(2)-(c)C(3)HN(2)]I (16a; X = Br, R = H, R'' = n-Bu; 16b, X = Br, R = H, R'' = n-C(8)H(17); 16c, X = I, R = Me, R'' = n-C(8)H(17), 16d, X = H, R = Me, R'' = n-C(8)H(17)) and phosphino imidazolium salts [1-C(6)H(5)-2-PR'(2)-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)N(2)]PF(6) (17a, R' = C(6)H(5); 17b, R' = (c)C(6)H(11)) or [1-(4-P(C(6)H(5))(2)-C(6)H(4))-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)HN(2)]PF(6), (20) and their selenium derivatives 1-(4-X-C(6)H(4))-2-P([double bond, length as m-dash]Se)R'(2)-4,5-R(2)-(c)C(3)N(2) (11a-Se-f-Se; X = Br, I; R = H, Me; R' = C(6)H(5), (c)C(6)H(11), (c)C(4)H(3)O) are reported. The structures of 11a-Se and [(1-(4-Br-C(6)H(4))-(c)C(3)H(2)N(2)-3-n-Bu)(2)PdI(2)] (19) in the solid state were determined. Cyclovoltammetric measurements were performed with the ferrocenyl-containing molecules 5 and 7 showing reversible redox events at E(0) = 0.108 V (ΔE(p) = 0.114 V) (5) and E(0) = 0.183 V (ΔE(p) = 0.102 V) (7) indicating that 7 is more difficult to oxidise. Imidazole oxidation does not occur up to 1.3 V in dichloromethane using [(n-Bu)(4)N][B(C(6)F(5))(4)] as supporting electrolyte, whereas an irreversible reduction is observed between -1.2 - -1.5 V. The phosphino imidazoles 11a-k and the imidazolium salts 17a,b and 20, respectively, were applied in the Suzuki C-C cross-coupling of 2-bromo toluene with phenylboronic acid applying [Pd(OAc)(2)] as palladium source. Depending on the electronic character of 11a-k, 17a,b and 20 the catalytic performance of the in situ generated catalytic active species can be predicted. As assumed, more electron-rich phosphines with their higher donor capability show higher activity and productivity. Additionally, 11e was applied in the coupling of 4-chloro toluene with phenylboronic acid showing an excellent catalytic performance when compared to catalysts used by Fu, Beller and Buchwald. Furthermore, 11e is eligible for the synthesis of sterically hindered biaryls under mild reaction conditions. C-C Coupling reactions with the phosphino imidazolium salts 17b and 20 in ionic liquids [BMIM][PF(6)] and [BDMIM][BF(4)] were performed, showing less activity than in common organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...