Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(51): 15839-15853, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30350702

ABSTRACT

The US government currently spends significant resources managing the legacies of the Cold War, including 300 million liters of highly radioactive wastes stored in hundreds of tanks at the Hanford (WA) and Savannah River (SC) sites. The materials in these tanks consist of highly radioactive slurries and sludges at very high pH and salt concentrations. The solid particles primarily consist of aluminum hydroxides and oxyhydroxides (gibbsite and boehmite), although many other materials are present. These form complex aggregates that dramatically affect the rheology of the solutions and, therefore, efforts to recover and treat these wastes. In this paper, we have used a combination of transmission and cryo-transmission electron microscopy, dynamic light scattering, and X-ray and neutron small and ultrasmall-angle scattering to study the aggregation of synthetic nanoboehmite particles at pH 9 (approximately the point of zero charge) and 12, and sodium nitrate and calcium nitrate concentrations up to 1 m. Although the initial particles form individual rhombohedral platelets, once placed in solution they quickly form well-bonded stacks, primary aggregates, up to ∼1500 Å long. These are more prevalent at pH = 12. Addition of calcium nitrate or sodium nitrate has a similar effect as lowering pH, but approximately 100 times less calcium than sodium is needed to observe this effect. These aggregates have fractal dimension between 2.5 and 2.6 that are relatively unaffected by salt concentration for calcium nitrate at high pH. Larger aggregates (>∼4000 Å) are also formed, but their size distributions are discrete rather than continuous. The fractal dimensions of these aggregates are strongly pH-dependent, but only become dependent on solute at high concentrations.

2.
J Appl Crystallogr ; 49(Pt 3): 934-943, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27275140

ABSTRACT

Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

3.
J Appl Crystallogr ; 48(Pt 4): 1055-1071, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26306088

ABSTRACT

Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

4.
Langmuir ; 24(18): 10089-98, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18702536

ABSTRACT

The impact of the nonionic surfactant, dodecyl triethyleneglycol ether (C(12)E(3)) on the solution microstructure of the dialkyl chain cationic surfactant, dihexadecyl dimethyl ammonium bromide, (DHDAB) has been investigated. The variation in solution microstructure has been studied using a combination of small angle neutron scattering, ultra small angle neutron scattering, optical texture and photon correlation spectroscopy. At low surfactant concentrations (1.5 mM) the microstructure takes the form of bilamellar vesicles (BLV) for compositions containing less than 20 mol % of added C(12)E(3). Multilamellar vesicles (MLV) are the predominant microstructure for solutions richer in composition than 20 mol % C(12)E(3). At more than 80 mol % C(12)E(3), the solution microstructure reverts to that of a lamellar phase dispersion consistent with studies on the pure nonionic surfactant. At higher concentrations (60 mM) a wide continuous L beta phase region is observed for compositions in the range 20 to 80 mol % C(12)E(3). The fine details of the phase diagram were obtained from quantitative analysis of the SANS data using a well-established lamellar membrane model. Irrespective of the nonionic content, the bilayers are in general highly rigid, consistent with those stabilized by charge interactions. Furthermore estimates of the product of membrane moduli (compressibility and bending modulus) indicate that the different phase regions have very different membrane properties, however the magnitude of the variations observed are not predicted using existing theoretical treatments.

5.
Langmuir ; 24(13): 6509-20, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18522442

ABSTRACT

The surface adsorption behavior and solution aggregate microstructure of the dichain cationic surfactant dihexadecyl dimethylammonium bromide (DHDAB) have been studied using small angle neutron scattering (SANS), light scattering, neutron reflectivity (NR), and surface tension (ST). Using a combination of surface tension and neutron reflectivity, the DHDAB equilibrium surface excess at saturation adsorption has been measured as 2.60 +/- 0.05 x 10 (-10) mol.cm (-2). The values obtained by both methods are in good agreement and are consistent with the values reported for other dialkyl chain surfactants. The critical aggregation concentration (CAC) values obtained from both methods (NR and ST) are also in good agreement, with a mean value for the CAC of 4 +/- 2 x 10 (-5) M. The surface equilibrium is relatively slow, and this is attributed to monomer depletion in the near surface region, as a consequence of the long monomer residence times in the surfactant aggregates. The solution aggregate morphology has been determined using a combination of SANS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (CryoTEM), and ultrasmall angle neutron scattering (USANS). Within the concentration range 1.5-80 mM, the aggregates are in the form of bilamellar vesicles with a lamellar " d-spacing" of the order of 900 A. The vesicles are relatively polydisperse with a particle size in the range 2000-4000 A. Above 80 mM, the bilamellar vesicles coexist with an additional L beta lamellar phase.

6.
Langmuir ; 24(15): 7674-87, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18582000

ABSTRACT

The self-assembly of dialkyl chain cationic surfactant dihexadecyldimethyl ammonium bromide, DHDAB, and nonionic surfactants monododecyl hexaethylene glycol, C(12)E(6), and monododecyl dodecaethylene glycol, C(12)E(12), mixtures has been studied using predominantly small-angle neutron scattering, SANS. The scattering data have been used to produce a detailed phase diagram for the two surfactant mixtures and to quantify the microstructure in the different regions of the phase diagram. For cationic-surfactant-rich compositions, the microstructure is in the form of bilamellar, blv, or multilamellar, mlv, vesicles at low surfactant concentrations and is in an L(beta) lamellar phase at higher surfactant concentrations. For nonionic-rich compositions, the microstructure is predominantly in the form of relatively small globular mixed surfactant micelles, L(1). At intermediate compositions, there is an extensive mixed (blv/mlv) L(beta)/L(1) region. Although broadly similar, in detail there are significant differences in the phase behavior of DHDAB/C(12)E(6) and DHDAB/C(12)E(12) as a result of the increasing curvature associated with C(12)E(12) aggregates compared to that of C 12E 6 aggregates. For the DHDAB/C(12)E(12) mixture, the mixed (blv/mlv) L(beta)/L(1) phase region is more extensive. Furthermore, C(12)E(12) has a greater impact upon the rigidity of the bilayer in the blv, mlv, and L(beta) regions than is the case for C(12)E(6). The general features of the phase behavior are also reminiscent of that observed in phospholipid/surfactant mixtures and other related systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...