Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26391334

ABSTRACT

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Subject(s)
Carbon Dioxide/metabolism , Plant Leaves/metabolism , Trees/metabolism , Carbon Isotopes/metabolism , Cycadopsida/metabolism , Magnoliopsida/metabolism , Plant Stomata/metabolism
2.
Oecologia ; 175(3): 747-62, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24696359

ABSTRACT

There is evidence of continued stimulation of foliage photosynthesis in trees exposed to elevated atmospheric CO2 concentrations; however, this is mostly without a proportional growth response. Consequently, we lack information on the fate of this extra carbon (C) acquired. By a steady application of a (13)CO2 label in a free air CO2 enrichment (FACE) experiment, we traced the fate of C in 37-m-tall, ca. 110-year-old Picea abies trees in a natural forest in Switzerland. Hence, we are not reporting tree responses to elevated CO2 (which would require equally (13)C labeled controls), but are providing insights into assimilate processing in such trees. Sunlit needles and branchlets grow almost exclusively from current assimilates, whereas shaded parts of the crowns also rely on stored C. Only 2.5 years after FACE initiation, tree rings contained 100% new C. Stem-respiratory CO2 averaged 50% of new C over the entire FACE period. Fine roots and mycorrhizal fungi contained 49-56 and 26-43% new C, respectively, after 2.5 years. The isotopic signals in soil CO2 arrived 12 days after the onset of FACE, yet it contained only ca. 15% new C thereafter. We conclude that new C first feeds into fast turnover C pools in the canopy and becomes increasingly mixed with older C sources as one moves away (downward) from the crown. We speculate that enhanced C turnover (its metabolic cost) along the phloem path, as evidenced by basipetal isotope signal depletion, explains part of the 'missing carbon' in trees that assimilated more C under elevated CO2.


Subject(s)
Carbon/metabolism , Picea/metabolism , Plant Leaves/metabolism , Air/analysis , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Isotope Labeling , Phloem/metabolism , Photosynthesis , Plant Roots/metabolism , Plant Stems/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL