Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901849

ABSTRACT

Aluminum-based adjuvants have been extensively used in vaccines. Despite their widespread use, the mechanism behind the immune stimulation properties of these adjuvants is not fully understood. Needless to say, extending the knowledge of the immune-stimulating properties of aluminum-based adjuvants is of utmost importance in the development of new, safer, and efficient vaccines. To further our knowledge of the mode of action of aluminum-based adjuvants, the prospect of metabolic reprogramming of macrophages upon phagocytosis of aluminum-based adjuvants was investigated. Macrophages were differentiated and polarized in vitro from human peripheral monocytes and incubated with the aluminum-based adjuvant Alhydrogel®. Polarization was verified by the expression of CD markers and cytokine production. In order to recognize adjuvant-derived reprogramming, macrophages were incubated with Alhydrogel® or particles of polystyrene as control, and the cellular lactate content was analyzed using a bioluminescent assay. Quiescent M0 macrophages, as well as alternatively activated M2 macrophages, exhibited increased glycolytic metabolism upon exposure to aluminum-based adjuvants, indicating a metabolic reprogramming of the cells. Phagocytosis of aluminous adjuvants could result in an intracellular depot of aluminum ions, which may induce or support a metabolic reprogramming of the macrophages. The resulting increase in inflammatory macrophages could thus prove to be an important factor in the immune-stimulating properties of aluminum-based adjuvants.


Subject(s)
Aluminum , Vaccines , Humans , Aluminum Hydroxide , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Macrophages
2.
J Med Chem ; 60(20): 8591-8605, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28937774

ABSTRACT

A class of potent, nonsteroidal, selective indazole ether-based glucocorticoid receptor modulators (SGRMs) was developed for the inhaled treatment of respiratory diseases. Starting from an orally available compound with demonstrated anti-inflammatory activity in rat, a soft-drug strategy was implemented to ensure rapid elimination of drug candidates to minimize systemic GR activation. The first clinical candidate 1b (AZD5423) displayed a potent inhibition of lung edema in a rat model of allergic airway inflammation following dry powder inhalation combined with a moderate systemic GR-effect, assessed as thymic involution. Further optimization of inhaled drug properties provided a second, equally potent, candidate, 15m (AZD7594), that demonstrated an improved therapeutic ratio over the benchmark inhaled corticosteroid 3 (fluticasone propionate) and prolonged the inhibition of lung edema, indicating potential for once-daily treatment.


Subject(s)
Acetamides/therapeutic use , Indazoles/therapeutic use , Pulmonary Edema/drug therapy , Receptors, Glucocorticoid/drug effects , Administration, Inhalation , Aged , Animals , Dose-Response Relationship, Drug , Humans , Mass Spectrometry , Powders , Proton Magnetic Resonance Spectroscopy , Rats
3.
J Immunol Methods ; 422: 87-94, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25896212

ABSTRACT

The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells into inflammatory cells. Information will be gained regarding the phagosomal pathways and the events inside the phagosomes, and thereby the ultimate fate of phagocytosed aluminum adjuvants could be resolved.


Subject(s)
Adjuvants, Immunologic/pharmacokinetics , Aluminum Hydroxide/pharmacokinetics , Aluminum Oxide/pharmacokinetics , Benzenesulfonates/chemistry , Flavonoids/chemistry , Phosphates/pharmacokinetics , Aluminum Hydroxide/immunology , Aluminum Oxide/immunology , Animals , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Phagocytosis/immunology , Phosphates/immunology , Staining and Labeling/methods
4.
Bioorg Med Chem Lett ; 24(11): 2571-7, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24755427

ABSTRACT

We report the discovery of highly potent and selective non-steroidal glucocorticoid receptor modulators with PK properties suitable for inhalation. A high throughput screen of the AstraZeneca compound collection identified sulfonamide 3 as a potent non-steroidal glucocorticoid receptor ligand. Further optimization of this lead generated indazoles 30 and 48 that were progressed to characterization in in vivo models. X-ray crystallography was used to gain further insight into the binding mode of selected ligands.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Discovery , Receptors, Glucocorticoid/antagonists & inhibitors , Sulfonamides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
5.
Clin Respir J ; 2(1): 17-25, 2008 Jan.
Article in English | MEDLINE | ID: mdl-20298300

ABSTRACT

INTRODUCTION: Inflammation is an important constituent of the pathology of chronic obstructive pulmonary disease (COPD), leading to alveolar destruction and airway remodelling. OBJECTIVE: The aim of this study was to assess the difference in plasma biomarkers of inflammation between asymptomatic smokers and patients with COPD. METHODS: We used commercially available enzyme-linked immunosorbent assay kits to measure the plasma levels of tumour necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9), monocyte chemotactic protein-1 (MCP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and tissue inhibitor of metalloproteinase-2 (TIMP-2) on two occasions with a 2-week interval in patients with COPD (n = 20), asymptomatic smokers (n = 10) and healthy lifelong non-smokers (n = 10). The participants were characterised clinically, physiologically and by quantitative computed tomography by measuring the relative area of emphysema below -910 Hounsfield units (RA-910). RESULTS: The results of the biomarker measurements on the two occasions were highly reproducible. Patients with COPD had significantly higher plasma levels of IL-8 (P = 0.004) and significantly lower levels of TIMP-1 (P = 0.02) than smokers and non-smokers. There was no statistically significant difference between the three groups in the level of TNF-alpha, MMP-9, MCP-1 and TIMP-2. The IL-8/TIMP-1 ratio correlated significantly with the degree of airway obstruction measured as forced expiratory volume in 1 second (FEV(1)) % predicted (r = -0.47, P < 0.01); with the diffusion capacity (r = -0.41, P < 0.01); and with the grade of emphysema measured as RA-910 (r = 0.39, P = 0.01). CONCLUSION: These findings suggest that the measurement of plasma biomarkers, such as IL-8/TIMP-1, may aid to discriminate patients with COPD from smokers at lower risk of developing COPD.


Subject(s)
Inflammation/blood , Interleukin-8/blood , Pulmonary Disease, Chronic Obstructive/blood , Smoking/blood , Tissue Inhibitor of Metalloproteinase-1/blood , Aged , Biomarkers/blood , Case-Control Studies , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Pulmonary Diffusing Capacity , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...