Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Biol Cell ; 35(3): ar43, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294869

ABSTRACT

Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.


Subject(s)
Dendritic Spines , N-Methylaspartate , Animals , Mice , Autophagosomes/metabolism , Autophagy , Dendritic Spines/metabolism , N-Methylaspartate/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Front Mol Neurosci ; 16: 1258615, 2023.
Article in English | MEDLINE | ID: mdl-38025260

ABSTRACT

Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.

3.
iScience ; 26(4): 106543, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37123244

ABSTRACT

Chronic myeloid leukemia (CML) cells circulate between blood and bone marrow niche, representing different microenvironments. We studied the role of the two RNA-binding proteins, T-cell-restricted intracellular antigen (TIAR), and the fragile X mental retardation protein (FMRP) in the regulation of protein translation in CML cells residing in settings mimicking peripheral blood microenvironment (PBM) and bone marrow microenvironment (BMM). The outcomes showed how conditions shaped the translation process through TIAR and FMRP activity, considering its relevance in therapy resistance. The QuaNCAT mass-spectrometric approach revealed that TIAR and FMRP have a discrete modulatory effect on protein synthesis and thus affect distinct aspects of leukemic cells functioning in the hypoxic niche. In the BMM setup, FMRP impacted metabolic adaptation of cells and TIAR substantially supported the resistance of CML cells to translation inhibition by homoharringtonine. Overall, our results demonstrated that targeting post-transcriptional control should be considered when designing anti-leukemia therapeutic solutions.

4.
Front Mol Neurosci ; 15: 924534, 2022.
Article in English | MEDLINE | ID: mdl-35992198

ABSTRACT

As microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to Mmp9 mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.

5.
EMBO Rep ; 21(8): e48882, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32558077

ABSTRACT

Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Proteomics , Synapses
6.
Mol Neurobiol ; 56(4): 2741-2759, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30056576

ABSTRACT

Neuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs. We show evidences that FMRP associates with Nlgn1, Nlgn2, and Nlgn3 mRNAs in vitro in both synaptoneurosomes and neuronal cultures. Next, we confirm local translation of Nlgn1, Nlgn2, and Nlgn3 mRNAs to be synaptically regulated by FMRP. As a consequence of elevated Nlgns mRNA translation Fmr1 KO mice exhibit increased incorporation of NLGN1 and NLGN3 into the postsynaptic membrane. Finally, we show that neuroligins synaptic level is precisely and dynamically regulated by their rapid proteolytic cleavage upon NMDA receptor stimulation in both wild type and Fmr1 KO mice. In aggregate, our study provides a novel approach to understand the molecular basis of FXS by linking the dysregulated synaptic expression of NLGNs with FMRP.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Fragile X Mental Retardation Protein/metabolism , Protein Biosynthesis , Proteolysis , Synapses/metabolism , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Membrane/metabolism , Cells, Cultured , Click Chemistry , Cross-Linking Reagents/metabolism , Hippocampus/metabolism , Male , Mice, Knockout , Models, Biological , Polyribosomes/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
J Neurosci Methods ; 293: 226-233, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28993203

ABSTRACT

BACKGROUND: Here we describe a detailed, reliable protocol for isolation of polysomal fractions from mouse brain synaptoneurosomes. This method is an important tool to study local protein synthesis in neurons. NEW METHOD: We combined rapid preparation of synaptoneurosomes by filtration with polysome profiling. We provide a detailed protocol highlighting difficulties and critical steps of: i) preparation of synaptoneurosomes; ii) polyribosome fractionation from synaptoneurosomes; iii) extraction of proteins and RNA from sucrose gradient fractions. RESULTS: and Comparison with Existing Methods We fractionated polyribosomes from synaptoneurosomes and detected the association of Mmp9, Camk2a and Stx1B mRNA with polysomes in the unstimulated conditions. Synaptic stimulation led to increased levels of Mmp9 and Camk2a mRNA in the heavy polysomal fractions. We compared our protocol with existing methods CONCLUSIONS: We have developed a reliable, effective method to prepare polyribosomal fractions from synaptoneurosomes to study polyribosomal binding of mRNAs as an aspect of synaptic translation in vitro.


Subject(s)
Cerebral Cortex/chemistry , Hippocampus/chemistry , Histocytological Preparation Techniques , Polyribosomes/chemistry , RNA, Messenger/analysis , Synaptosomes/chemistry , Animals , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinase Type 2/analysis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cerebral Cortex/metabolism , Dissection , Electrophoresis, Polyacrylamide Gel , Hippocampus/metabolism , Male , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/metabolism , Mice , Polyribosomes/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sucrose/analysis , Synaptosomes/metabolism , Syntaxin 1/analysis , Syntaxin 1/metabolism
8.
Mol Neurobiol ; 53(7): 4701-12, 2016 09.
Article in English | MEDLINE | ID: mdl-26319558

ABSTRACT

Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.


Subject(s)
Dendritic Spines/metabolism , Matrix Metalloproteinase 9/metabolism , MicroRNAs/biosynthesis , RNA, Messenger/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Rats , Synaptosomes/metabolism
9.
PLoS One ; 10(7): e0134018, 2015.
Article in English | MEDLINE | ID: mdl-26207897

ABSTRACT

Although memories appear to be elusive phenomena, they are stored in the network of physical connections between neurons. Dendritic spines, which are actin-rich dendritic protrusions, serve as the contact points between networked neurons. The spines' shape contributes to the strength of signal transmission. To acquire and store information, dendritic spines must remain plastic, i.e., able to respond to signals, by changing their shape. We asked whether glycogen synthase kinase (GSK) 3α and GSK3ß, which are implicated in diseases with neuropsychiatric symptoms, such as Alzheimer's disease, bipolar disease and schizophrenia, play a role in a spine structural plasticity. We used Latrunculin B, an actin polymerization inhibitor, and chemically induced Long-Term Depression to trigger fast spine shape remodeling in cultured hippocampal neurons. Spine shrinkage induced by either stimulus required GSK3α activity. GSK3ß activity was only important for spine structural changes after treatment with Latrunculin B. Our results indicate that GSK3α is an essential component for short-term spine structural plasticity. This specific function should be considered in future studies of neurodegenerative diseases and neuropsychiatric conditions that originate from suboptimal levels of GSK3α/ß activity.


Subject(s)
Dendritic Spines/metabolism , Glycogen Synthase Kinase 3/metabolism , Neurogenesis , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cells, Cultured , Dendritic Spines/drug effects , Hippocampus/cytology , Hippocampus/embryology , Mice , Thiazolidines/pharmacology
10.
J Neurosci ; 33(46): 18234-41, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24227732

ABSTRACT

Activity-dependent protein synthesis at synapses is dysregulated in the Fragile X syndrome (FXS). This process contributes to dendritic spine dysmorphogenesis and synaptic dysfunction in FXS. Matrix Metalloproteinase 9 (MMP-9) is an enzyme involved in activity-dependent reorganization of dendritic spine architecture and was shown to regulate spine morphology in a mouse model of FXS, the Fmr1 knock-out mice. Here we show that MMP-9 mRNA is part of the FMRP complex and colocalizes in dendrites. In the absence of FMRP MMP-9 mRNA translation is increased at synapses, suggesting that this mechanism contributes to the increased metalloproteinase level at synapses of Fmr1 knock-out mice. We propose that such a local effect can contribute to the aberrant dendritic spine morphology observed in the Fmr1 knock-out mice and in patients with FXS.


Subject(s)
Fragile X Mental Retardation Protein/physiology , Matrix Metalloproteinase 9/biosynthesis , RNA, Messenger/biosynthesis , Synapses/enzymology , Animals , Dendrites/enzymology , Dendrites/genetics , Female , Hippocampus/enzymology , Matrix Metalloproteinase 9/genetics , Mice , Mice, Knockout , RNA, Messenger/genetics , Rats , Synapses/genetics
11.
J Neurosci ; 32(42): 14538-47, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23077039

ABSTRACT

Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release. First, dendritic transport of MMP-9 mRNA was seen in primary hippocampal neuronal cultures treated with glutamate and in dentate gyrus granule cells in adult anesthetized rats after induction of long-term potentiation. Second, rapid, activity-dependent polyadenylation of MMP-9 mRNA; association of the mRNA with actively translating polysomes; and de novo MMP-9 protein synthesis were obtained in synaptoneurosomes isolated from rat hippocampus. Third, glutamate stimulation of cultured hippocampal neurons evoked a rapid (in minutes) increase in MMP-9 activity, as measured by cleavage of its native substrate, ß-dystroglycan. This activity was reduced by the polyadenylation inhibitor, thus linking MMP-9 translation with protein function. In aggregate, our findings show that MMP-9 mRNA is transported to dendrites and locally translated and that the protein is released in an activity-dependent manner. Acting in concert with other dendritically synthesized proteins, locally secreted MMP-9 may contribute to the structural and functional plasticity of the activated synapses.


Subject(s)
Hippocampus/enzymology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Biosynthesis/physiology , Animals , Dendrites/enzymology , Enzyme Activation/genetics , Hippocampus/physiology , Male , Perforant Pathway/cytology , Perforant Pathway/enzymology , Primary Cell Culture , Protein Transport , Rats , Rats, Sprague-Dawley , Synaptosomes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...