Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(9): 4610-4621, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38380437

ABSTRACT

The excessive use of herbicides has caused a series of problems related to human health, environmental pollution, and an increase in the resistance of plants to commercial herbicides. As an alternative, natural compounds and their semisynthetic derivatives have been widely studied to obtain environmentally friendly and more effective herbicides than the usual ones. In view of these factors, the aim of this work was to synthesize new molecules with herbicidal potential using thymol as a starting material, a natural phenol that has a pronounced phytotoxic effect. Novel N-phenyl-2-thymoxyacetamides were synthesized and characterized by MS and by 1H and 13C NMR. All prepared molecules were subjected to phytotoxic and cytotoxic activity assays using Lactuca sativa L. and Sorghum bicolor L. as model plants. Molecules containing chlorine in the para position of the thymoxy group exhibited phytotoxic and cytogenotoxic effects superior to those of the commercial herbicides 2,4-D and glyphosate.


Subject(s)
Herbicides , Thymol , Humans , Thymol/toxicity , Herbicides/toxicity , Glyphosate , Plants
2.
Molecules ; 28(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37570879

ABSTRACT

The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound ß-caryophyllene (ß-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-ß-cyclodextrin (HPßCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and ß-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and ß-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the ß-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and ß-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and ß-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.


Subject(s)
Herbicides , Oils, Volatile , Psidium , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Herbicides/pharmacology , Herbicides/analysis , Oils, Volatile/chemistry , Plant Leaves/chemistry , Psidium/chemistry , Solubility
3.
Environ Sci Pollut Res Int ; 30(13): 38955-38969, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36588132

ABSTRACT

Herbicides are commonly used to control weed. However, some plants are resistant to such products. To identify less harmful herbicides, it is crucial to search for different mechanisms of action. Thymol is an easily acquired allelopathic compound, capable of producing its respective semisynthetic derivative, thymoxyacetic acid. The aim of this study was to determine the effects of thymol and thymoxyacetic acid molecules as bioherbicides in greenhouse at the concentration of 3 mmol L-1 in pre- and postemergence applications in five species: Amaranthus viridis L., Cucumis sativus L., Lactuca sativa L., Eleusine indica L., and Sorghum bicolor L. The initial seedling development and DNA changes were analyzed. These molecules were contrasting with the solvent, in the negative control, and with the glyphosate, in the positive control, promoting phytogenotoxic activities. The toxic effect of thymoxyacetic acid was more effective in preemergence and thymol's in postemergence. We also observed a reduction in the germination speed index and root growth with a negative correlation to the increase in potassium leaching. Damage to the root and shoot of the seedlings was verified at the DNA level, and the phytotoxicity of the plants treated with the herbicide glyphosate was similar to the plants treated with the natural molecules tested. The bioherbicidal effect of thymol and thymoxyacetic acid exacerbates the reduction of the environmental impact caused by the disordered and increased use of residual pesticides.


Subject(s)
Herbicides , Thymol , Thymol/pharmacology , Plant Weeds , Herbicides/toxicity , Seedlings , Germination
4.
Sci Rep ; 11(1): 24408, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34949763

ABSTRACT

Some forest trees have been polyploidized to improve their traits and to supply new germplasms for breeding programs. As trees have a long juvenile stage, the early characterization of the chromosome set doubling effects is crucial for previous selection. Thus, we aimed to characterize the chemical variability of essential oils from diploid and autotetraploid germplasms (autotetraploid A and B) of Eucalyptus benthamii, as well as to evaluate their larvicidal and allelopathic effects. Autotetraploid A showed a higher essential oil yield than diploid and autotetraploid B, which did not differ quantitatively. Aromadendrene, viridiflorol and α-pinene were the major compounds in the diploid essential oil. In contrast, compounds were present in autotetraploids, such as 1,8-cineole, limonene, α-terpineol, and α-terpinyl-acetate. Essential oils from the diploid at 50-200 ppm were twice as larvicidal than those from autotetraploids against Aedes aegypti larvae. Considering the phytotoxicity bioassays using Lactuca sativa, essential oils from both ploidy levels affected root growth. Moreover, the essential oils inhibited shoot growth at all concentrations tested (187.5; 375; 750; 1500; and 3000 ppm). Autotetraploid A and B had the same effect on shoot growth as glyphosate. The essential oils had no cytogenotoxic effect on root meristematic cells of L. sativa, whereas phytotoxic potential was identified mainly in shoot growth. This work demonstrated a dramatic change in secondary metabolism (terpene composition) related to an increase in the ploidy level in Eucalyptus germplasms. In addition, we report the novelty of the chemical composition of essential oils among germplasms and their potential use as larvicidal and post-emergence weed control agents.


Subject(s)
Eucalyptus Oil/chemistry , Eucalyptus Oil/pharmacology , Eucalyptus/chemistry , Eucalyptus/genetics , Herbicides , Insecticides , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Tetraploidy , Aedes/drug effects , Allelopathy/drug effects , Animals , Biological Assay , Dose-Response Relationship, Drug , Larva/drug effects , Lactuca/drug effects , Lactuca/growth & development , Plant Breeding , Plant Shoots/drug effects , Plant Shoots/growth & development
5.
Preprint in English | medRxiv | ID: ppmedrxiv-20182055

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocytes death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with COVID-19. Here, we show that SARS-CoV-2 induces inflammasome activation and cell death by pyroptosis in human monocytes, experimentally infected and in patients under intensive care. Pyroptosis was dependent on caspase-1 engagement, prior to IL-1{beta} production and inflammatory cell death. Monocytes exposed to SARS-CoV-2 downregulate HLA-DR, suggesting a potential limitation to orchestrate the immune response. Our results originally describe the mechanism by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb in patients with severe 2019 coronavirus disease (COVID-19), and emphasize the need for identifying anti-inflammatory and antiviral strategies to prevent SARS-CoV-2-induced pyroptosis.

6.
Sci Rep ; 10(1): 12213, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699377

ABSTRACT

The intensive application of agrochemicals in crops has negatively impacted the environment and other organisms. The use of naturally occurring compounds may be an alternative to mitigate these effects. Plants are secondary metabolite reservoirs and may present allelopathic activity, which is potentially interesting to be used in bioherbicide formulations. In this context, the present work aimed to evaluate the phytotoxic and cytotoxic effects of essential oils extracted from leaves of Sparattanthelium botocudorum and Sparattanthelium tupiniquinorum in bioassays with the plant models Lactuca sativa L. and Sorghum bicolor L. Moench. The essential oils were applied at concentrations of 3,000, 1,500, 750, 375 and 187.5 ppm. Chemical characterization of the oils was performed, and their impact on the percentage of germinated seeds, initial development of L. sativa and S. bicolor seedlings, and changes in the mitotic cycle of meristematic cells from L. sativa roots was evaluated. The major compound of the essential oils was germacrene D, followed by bicyclogermacrene, ß-elemene and germacrene A. The phytotoxicity assay showed that the essential oils of both species reduced the root and shoot growth in L. sativa and decreased the germination and shoot growth in S. bicolor. Inhibition was dependent on the tested oil concentration. In the cytotoxicity assay, a decrease in mitotic index and chromosomal and nuclear alterations were observed, which resulted from aneugenic and clastogenic action.


Subject(s)
Hernandiaceae/metabolism , Oils, Volatile/chemistry , Seedlings/drug effects , Volatile Organic Compounds/pharmacology , Chromatography, Gas , Germination/drug effects , Hernandiaceae/chemistry , Lactuca/drug effects , Lactuca/growth & development , Mitosis/drug effects , Oils, Volatile/analysis , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Seeds/growth & development , Sesquiterpenes, Germacrane/pharmacology , Sorghum/drug effects , Sorghum/growth & development , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
7.
Preprint in English | bioRxiv | ID: ppbiorxiv-020925

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors, such as atazanavir (ATV). ATV is of high interest because of its bioavailability within the respiratory tract. Our results show that ATV could dock in the active site of SARS-CoV-2 Mpro, with greater strength than LPV. ATV blocked Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells, human pulmonary epithelial cell line and primary monocytes, impairing virus-induced enhancement of IL-6 and TNF- levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.

8.
Biosci. j. (Online) ; 35(5): 1544-1551, sept./oct. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1049050

ABSTRACT

Today, a great interest in Jatropha-based products exists worldwide, mainly for the production of biofuel.However, the oil obtained from this plant is known to be toxic due to contained curcins andphorbol esters. Bioassays, including plant cytogenetic assays based on cell cycle observation, are useful for determining the toxicity of J. curcas oil. Hence, the aim of this study was to describe the mechanism of action of J. curcas oil by cell cycle analysis using Lactuca sativa as plant testing model. A decrease in root growth was observed, closely related to the reduction in mitotic index, along with an increase in condensed nuclei. J. curcas chemicals act both as aneugenic agents, leading to the formation of lagged, sticky chromosomes and c-metaphase cells, as well as clastogenic agents, inducing the formation of chromosome bridges and fragments. The cytotoxicity and genotoxicity of phorbol esters and other chemical components of J. curcas oil was determined and discussed.


Um grande interesse mundial existe em produtos à base de pinhão manso, principalmente para a produção de biocombustíveis. No entanto, o óleo obtido a partir desta planta é conhecidamente tóxico por conter curcina e ésteres de forbol. Bioensaios, incluindo ensaios citogenéticos em plantas-modelo com base na observação do ciclo celular, são úteis para determinar a toxicidade do óleo de J. curcas. Assim, o objetivo deste estudo foi descrever o mecanismo de ação do óleo de J. curcas por análise do ciclo celular usando Lactuca sativa como modelo de teste em plantas. Foi observada uma redução no crescimento das raízes, intimamente relacionada com a redução do índice mitótico e com um aumento de núcleos condensados. Os constituintes químicos de J. curcas atuam simultaneamente como agentes aneugênicos, levando à formação de cromossomos perdidos e pegajosos e células em c-metáfase, bem como agentes clastogênicos, induzindo a formação de pontes e fragmentos cromossômicos. A citotoxicidade e genotoxicidade do éster de forbol e outros componentes químicos do óleo de J. curcas foram determinados e discutidos.


Subject(s)
Cell Cycle , Aneugens , Jatropha , Toxicity , Mitotic Index
9.
Environ Sci Pollut Res Int ; 26(25): 26216-26228, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31286378

ABSTRACT

The use of allelopathic compounds is an alternative for weeds control, since they present low toxicity when compared with the synthetic herbicides, that may cause several damages, as the contamination of the environment. Our objective was to determine the chemical composition and allelopathic properties of the essential oils of Psidium cattleianum, P. myrtoides, P. friedrichsthalianum, and P. gaudichaudianum on the germination and root growth of Lactuca sativa and Sorghum bicolor, and to evaluate their action on the cell cycle of root meristematic cells of L. sativa. The main compound found in all the studied species was (E)-caryophyllene (P. cattleianum-23.4 %; P. myrtoides-19.3%; P. friedrichsthalianum-24.6% and P. gaudichaudianum-17.0%). The different essential oils were tested at different concentrations on L. sativa and S. bicolor, reducing germination, germination speed index, and root and shoot growth of lettuce and sorghum seedlings. The cytotoxicity and aneugenic potential of these oils were evidenced by the reduction of the mitotic index and increase of the frequency of chromosomal alterations in L. sativa. The essential oils of the species of Psidium studied have potential to be used in weeds control.


Subject(s)
Germination/drug effects , Herbicides/pharmacology , Lactuca/drug effects , Meristem/chemistry , Oils, Volatile/chemistry , Plant Oils/pharmacology , Psidium/chemistry , Seedlings/drug effects , Sorghum/chemistry , Allelopathy , Herbicides/chemistry , Lactuca/chemistry , Phytochemicals , Polycyclic Sesquiterpenes , Psidium/drug effects , Sesquiterpenes
10.
Rev. biol. trop ; 66(2): 495-502, abr.-jun. 2018. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-977326

ABSTRACT

Abstract The tropical and subtropical naturalized physic nut (Jatropha curcas L.), has been explored for biodiesel production in recent times. The oil is extracted from the seeds and, for the production to be feasible, utilization of the residual seed cake is crucial. Although the cake could be employed as a protein source in animal feed, it is rich in phorbol ester, which is toxic for animals. Therefore, breeding programs have been working to reduce or eliminate the phorbol ester content in physic nut. In this context, the present work aimed to evaluate the physic nut oil of toxic and non-toxic varieties (containing known or undetectable amounts of phorbol ester, respectively) with regards to phytotoxicity in a model experiment with Lactuca sativa L. For this, the percentage of germinated seeds was evaluated after 8, 16, 24, 36 and 48 hours of exposure to the treatments with toxic and non-toxic oil at concentrations of 22.5 %, 45 % and 67.5 % of emulsion (physic nut oil energetically mixed with distilled water). Root growth was determined after 48 hours of exposure and the germination speed index was obtained. The different stages of mitotic division as well as possible chromosomal and nuclear alterations were also recorded. The mitotic index was calculated as the number of dividing cells, as a fraction of the total number of cells, and the frequency of chromosome and nuclear alterations, expressed as the percentage of number of alterations divided by the total number of cells. Both varieties exhibited phytotoxicity, inducing significant reductions in percentage of germinated seeds (reduction of 98 %), germination speed index (reduction of 24.44) and root growth (reduction of 8.54 mm). In microscopic analysis, a mitodepressive effect was observed for both oils at the three concentrations used when compared to the negative control; however, it was possible to distinguish between the toxic and the non-toxic varieties based on the more expressive reduction of division promoted by the first, 2.19 %. Significant increments in the frequency of mitotic cells showing chromosome alterations as well, as the presence of condensed nuclei, were observed in the treated cells. However, these parameters were not significantly different from the control in the cells treated with both physic nut oils. In conclusion, the evaluation of root growth and cell division in the plant model L. sativa, can be proposed as an alternative to animal tests to distinguish the varieties with high and low phorbol ester concentration, thus contributing to the detection of toxicity in varieties used in breeding programs.


Resumen Jatropha curcas L., naturalizado tropical y subtropical, ha sido explorado para la producción de biodiesel. El aceite se extrae de las semillas y, para que la producción sea factible, la utilización de la torta de semillas residual es crucial. Aunque la torta se puede emplear como una fuente de proteína en la alimentación animal, es rica en éster de forbol, que es tóxico para los animales. Por lo tanto, los programas de mejoramiento han procurado reducir o eliminar el contenido de éster de forbol de J. curcas. En este contexto, el presente trabajo tuvo como objetivo evaluar el aceite de J. curcas de las variedades tóxicas y no tóxicas (con cantidades conocidas o indetectables de éster de forbol, respectivamente) con respecto a la fitotoxicidad en el modelo Lactuca sativa L. El porcentaje de semillas germinadas se evaluó después de 8, 16, 24, 36 y 48 horas de tratamiento. El crecimiento de la raíz se determinó después de 48 horas de exposición y se obtuvo el índice de velocidad de germinación. Se registraron las diferentes etapas de la división mitótica así como posibles alteraciones cromosómicas y nucleares. El índice mitótico se calculó como el número de células en división como una fracción del número total de células y la frecuencia de las alteraciones cromosómicas y nucleares, expresada como el porcentaje del número de alteraciones dividido entre el número total de células. Ambas variedades exhibieron fitotoxicidad, induciendo reducciones significativas en el porcentaje de semillas germinadas (Reducción del 98 %), índice de velocidad de germinación (Reducción de 24.44) y crecimiento de raíces (Reducción de 8.54 mm). En el análisis microscópico, se observó un efecto mitodepresivo para ambos aceites. Sin embargo, fue posible distinguir entre las variedades tóxicas y las no tóxicas basándose en la reducción más expresiva de la división promovida por la primera, 2.19 %. Se observaron incrementos significativos en la frecuencia de células mitóticas que mostraban alteraciones cromosómicas, así como la presencia de núcleos condensados en las células tratadas. Sin embargo, estos parámetros no fueron significativamente diferentes del control en las células tratadas con ambos aceites de J. curcas. En conclusión, la evaluación del crecimiento de las raíces y la división celular en el modelo L. sativa se puede proponer como una alternativa a las pruebas en animales para distinguir las variedades con concentraciones altas y bajas de éster de forbol, contribuyendo así a la detección de toxicidad en variedades utilizadas en programas de mejoramiento genético.


Subject(s)
Phorbol Esters/toxicity , Toxicity Tests , Germination , Jatropha/chemistry , Biofuels
11.
Comp Cytogenet ; 10(1): 97-108, 2016.
Article in English | MEDLINE | ID: mdl-27186340

ABSTRACT

Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and for understanding the evolutionary history of different taxa. However, the chromosome number is the only karyotype aspect reported for the species of Dorstenia so far. In this study, the nuclear genome size of Dorstenia arifolia (Lamarck, 1786), Dorstenia bonijesu (Carauta & C. Valente, 1983) and Dorstenia elata (Hooker, 1840) was evaluated and their karyotype morphometry accomplished, with the aim of verifying the potential of those parameters to understand evolutionary issues. Mean nuclear 2C value ranged from 2C = 3.49 picograms (pg) for Dorstenia elata to 2C = 5.47 pg for Dorstenia arifolia, a variation of ± 1.98 pg. Even though showing a marked difference in 2C value, the three species exhibited the same 2n = 32. Corroborating the flow cytometry data, differences in chromosome morphology were found among the karyotypes of the species investigated. Based on this and the only phylogeny proposed for Dorstenia thus far, structural rearrangements are related to the karyotype variations among the three species. Besides, the karyological analysis suggests a polyploid origin of the Dorstenia species studied here.

12.
J Agric Food Chem ; 63(41): 8981-90, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26416575

ABSTRACT

The essential oil of Plectranthus amboinicus and its chemotypes, carvacrol and thymol, were evaluated on the germination and root and aerial growth of Lactuca sativa and Sorghum bicolor and in acting on the cell cycle of meristematic root cells of L. sativa. The main component found in the oil by analysis in gas chromatography-mass spectrometry and gas chromatography flame ionization detection was carvacrol (88.61% in area). At a concentration of 0.120% (w v(-1)), the oil and its chemotypes retarded or inhibited the germination and decreased root and aerial growth in monocot and dicot species used in the bioassays. In addition, all substances caused changes in the cell cycle of the meristematic cells of L. sativa, with chromosomal alterations occurring from the 0.015% (w v(-1)) concentration. The essential oil of P. amboinicus, carvacrol, and thymol have potential for use as bioherbicides.


Subject(s)
Monoterpenes/toxicity , Oils, Volatile/toxicity , Plant Extracts/toxicity , Plectranthus/chemistry , Thymol/toxicity , Biological Assay , Cymenes , Lactuca/drug effects , Lactuca/genetics , Lactuca/growth & development , Mass Spectrometry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Seeds/drug effects , Seeds/growth & development , Sorghum/drug effects , Sorghum/genetics , Sorghum/growth & development , Thymol/chemistry
13.
Genome Announc ; 2(6)2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25395632

ABSTRACT

Here, we present the draft genome sequences of Lactococcus lactis subsp. lactis CECT 4433, a cheese fermentation starter strain. The genome provides further insight into the genomic plasticity, biocomplexity (including gene strain specifics), and evolution of these genera.

14.
Plant Cell Rep ; 30(12): 2303-12, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21850594

ABSTRACT

Image cytometry (ICM) has been used to measure DNA 2C-values by evaluating the optical density of Feulgen-stained nuclei. This optical measurement is carried out using three basic tools: microscopy, digital video camera, and image analysis software. Because ICM has been applied to plants, some authors have remarked that studies should be performed before this technique can be accepted as an accurate method for determination of plant genome size. Based on this, the 2C-value of eight plants, which are widely used as standards in DNA quantifications, was reassessed in a cascade-like manner, from A. thaliana through R. sativus, S. lycopersicum, Glycine max, Z. mays, P. sativum, V. faba, to A. cepa. The mean 2C-values of all plants were statistically compared to the values reported by other authors using flow cytometry and/or ICM. These analyses demonstrated that ICM is an accurate and reliable method for 2C-value measurement, representing an attractive alternative to flow cytometry. Statistical comparison of the results also indicated Glycine max 'Polanka' as the most adequate primary standard. However, distinct authors have been advised that 2C DNA content of the reference standard should be close to that of the sample. As three further approaches also revisited the 2C-value of these eight plants, we have thus proposed a mean 2C-value for each eight species.


Subject(s)
DNA, Plant/standards , Genome, Plant , Image Cytometry/methods , Plants/genetics , Calibration , Genome Size , Image Processing, Computer-Assisted
15.
Plant Cell Rep ; 30(7): 1183-91, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21318354

ABSTRACT

Flow cytometry (FCM) techniques have enabled characterization of the genome size for various plant species. In order to measure the nuclear genome size of a species, reference standards with well-established DNA content are necessary. However, different 2C-values have been described for the same species used as reference standard. This fact has brought about inaccurate genome measurements, making relevant the establishment of optimal DNA reference standards for plant cytometric analyses. Our work revisited the genome size of Arabidopsis thaliana and other seven plant standards, which were denominated "Dolezel's standard set" and have been widely used in plant DNA measurements. These eight plant standards were reassessed for a comparative measurement of their DNA content values, using each plant species as primary standard in a cascade-like manner, from A. thaliana to Allium cepa. The genome size values obtained here were compared to those reported in the literature by statistical analyses. As a result, Raphanus sativus and Drosophila melanogaster were considered the most inadequate primary standards, whereas A. thaliana, Solanum lycopersicum and Pisum sativum were found to be the most suitable.


Subject(s)
Arabidopsis/genetics , DNA, Plant/analysis , Flow Cytometry , Genome, Plant , Allium/genetics , Animals , Cell Nucleus/genetics , DNA, Plant/genetics , Drosophila/genetics , Solanum lycopersicum/genetics , Raphanus/genetics , Reference Standards , Glycine max/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...