Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Front Cell Infect Microbiol ; 14: 1370062, 2024.
Article in English | MEDLINE | ID: mdl-38510964

ABSTRACT

Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Quorum Sensing , Bacteria , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Virulence Factors/pharmacology , Pseudomonas aeruginosa
3.
Biofouling ; 39(3): 316-326, 2023 03.
Article in English | MEDLINE | ID: mdl-37246932

ABSTRACT

Biofilm production facilitates microbial colonization of wounds and catheters. Acinetobacter baumannii produces high levels of biofilm and causes difficult-to-treat nosocomial infections. Candida albicans is another strong biofilm producer which may facilitate A. baumannii adhesion by providing hyphae-mediated OmpA-binding sites. Here we tested the potential of 2'-hydroxychalcones to inhibit dual-species biofilm production of A. baumannii and Candida spp., and further predicted the mechanism of structure-related difference in activity. The results suggest that 2'-hydroxychalcones exhibit potent activity against Candida spp./A. baumannii dual-species biofilm production. Particularly active was trifluoromethyl-substituted derivative (p-CF3), which decreased C. albicans/A. baumannii biomass produced on vein-indwelling parts of the central venous catheterization set by up to 99%. Further, higher OmpA-binding affinity was also calculated for p-CF3, which together with demonstrated significant ompA-downregulating activity, suggests that superior antibiofilm activity of this chalcone against the tested dual-species community of A. baumannii is mediated through the OmpA.


Subject(s)
Acinetobacter baumannii , Chalcones , Candida albicans , Chalcones/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology
4.
J Appl Microbiol ; 133(3): 1197-1206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35612566

ABSTRACT

AIMS: To investigate the synergistic activity of colistin and selenium nanoparticles (SeNPs) against pandrug-resistant (PDR) Ac. baumannii. METHODS AND RESULTS: Chequerboard and time-kill assays were employed to explore the potential synergistic interactions between colistin and SeNPs against Ac. baumannii isolates (8), previously determined as colistin-resistant (MIC range 16-256 µg ml-1 ). Also, whole-genome sequencing (WGS) and gene expression analyses were used to elucidate the mechanisms of colistin resistance. Exceptionally strong synergistic activity (FICI range 0.004-0.035) of colistin and SeNPs against colistin-resistant isolates was revealed. Colistin (0.5 or 1 µg ml-1 ) used in combination with SeNPs (0.5 µg ml-1 ) was able to reduce initial inoculum during the first 4 h of incubation, in contrast to colistin (0.5, 1 or 2 µg ml-1 ) alone. CONCLUSIONS: These findings propose colistin/SeNPs combination as a new option to fight PDR Ac. baumannii, the therapeutic possibilities of which should be proved in future in vivo studies. SIGNIFICANCE AND IMPACT OF STUDY: Here we present the first evidence of synergy between colistin and selenium compounds against bacteria in general. Also, WGS and gene expression analyses provide some new insights into Ac. baumannii colistin resistance mechanisms.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Nanoparticles , Selenium , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Drug Synergism , Humans , Microbial Sensitivity Tests , Selenium/pharmacology
5.
Chem Biodivers ; 19(5): e202200047, 2022 May.
Article in English | MEDLINE | ID: mdl-35316577

ABSTRACT

Dry MeOH extract of Ferula heuffelii (Apiaceae) underground parts was tested for spasmolytic, gastroprotective and antioxidant activities. HPLC analysis revealed that chlorogenic acid (CGA; 34.6 mg/g) was its main constituent. Extract in vitro exhibited notable total antioxidant activity (FRAP value=1.0 µmol Fe2+ /mg), and scavenging of DPPH (SC50 =62.5 µg/ml) and • OH radicals (49.5 % at 20 µg/ml in 2-deoxyribose assay). In vitro on isolated rat ileum, extract exhibited significant spasmolytic activity, i. e., it showed 124.6 % of maximal atropine effect on spontaneous contractions (at 100 µg/ml), and reduced spasmogenic effect of KCl (80 mm) to 44.4 % (at 60 µg/ml) and of highest applied concentration of ACh to 26.3 % (at 120 µg/ml). In parallel experiments, spasmolytic effect of CGA was also demonstrated. In acute EtOH-induced gastric ulceration model in rats, extract (100 mg/kg p.o.) showed significant gastroprotective effect (gastric damage score 0.50), similar to ranitidine (20 mg/kg p.o.). Obtained results showed that tested F. heuffelii polar extract represents new herbal preparation with potential use against some gastrointestinal complaints.


Subject(s)
Ferula , Animals , Antioxidants/pharmacology , Methanol , Parasympatholytics/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Rats
6.
Chem Biodivers ; 18(1): e2000786, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33188577

ABSTRACT

An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2'-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.


Subject(s)
Acinetobacter baumannii/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Biofilms/drug effects , Chalcone/chemistry , Gene Expression/drug effects , Acyl-Butyrolactones/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Bacterial Outer Membrane Proteins/metabolism , Chalcone/chemical synthesis , Chalcone/pharmacology , RNA, Messenger/metabolism
7.
Front Bioeng Biotechnol ; 8: 624621, 2020.
Article in English | MEDLINE | ID: mdl-33569376

ABSTRACT

Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70-300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.

8.
Appl Microbiol Biotechnol ; 103(20): 8529-8543, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31396680

ABSTRACT

Novel alginate hydrogels with silver nanoparticles (AgNPs) and honey components were produced with the aim to target multidrug-resistant bacterial strains causing nosocomial wound infections. AgNP synthesis was optimized in highly concentrated honey solutions so that a 5-month stable, colloid solution with 50% of honey and ~ 8 nm AgNPs at neutral pH was obtained. The colloid solution was further used to produce nano-composite Ag/alginate hydrogels in different forms (microbeads, microfibers and discs) that retained all AgNPs and high fractions of honey components (40-60%) as determined by the phenol-sulfuric acid and Folin-Ciocalteu methods. The hydrogels were characterized by UV-Vis spectroscopy and Fourier-transform infrared-attenuated total reflectance spectroscopy while the antibacterial activity was investigated against a broad spectrum of Gram-negative and Gram-positive bacteria, including 13 multi-resistant clinical strains of Acinetobacter baumannii, one clinical strain of Pseudomonas aeruginosa and one clinical strain of Staphylococcus aureus. At the total released silver concentration of ~ 9 µg/ml, the hydrogels exhibited strong bactericidal activity against standard and most of the investigated multi-resistant hospital strains with the exemption of 3 clinical strains of A. baumannii in which antibacterial effects were absent. These results reveal the need for further in-depth studies of bacterial resistance mechanisms and, in the same time, potentials of the novel Ag/alginate hydrogels with honey components to combat wound infections and enhance healing as non-sticky, antibacterial, and bioactive dressings.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Honey , Nanogels/chemistry , Microbial Sensitivity Tests , Nanoparticles , Silver/pharmacology
9.
Chem Biodivers ; 14(5)2017 May.
Article in English | MEDLINE | ID: mdl-27981797

ABSTRACT

Phenolic compounds and different biological activities of the dry MeOH extracts of the flowers and the herb (aerial parts without flowers) of Laserpitium zernyi Hayek (Apiaceae) were investigated. The total phenolic contents in the extracts were determined spectrophotometrically using Folin-Ciocalteu reagent. In both extracts, apigenin, luteolin, their 7-O-glucosides, and chlorogenic acid were detected by HPLC. Identified phenolics were quantified in both extracts, except luteolin in L. zernyi herb extract. The extracts (p.o.) were tested for anti-edematous activity in a model of carrageenan (i.pl.) induced rat paw edema. Antioxidant activity of the extracts was assessed by FRAP assay and DPPH and • OH radicals scavenging tests. Antimicrobial activity was investigated using broth microdilution test against five Gram-positive and three Gram-negative bacteria, as well as against two strains of Candida albicans. The polyphenol-richer flower extract exerted higher anti-edematous and antioxidant activities. The herb extract exhibited better antimicrobial effect against Micrococcus luteus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa, while against other tested microorganisms, the activity of both extracts was identical. Demonstrated biological activities of L. zernyi flower and herb extracts represent a good basis for their further investigation as potential new herbal medicinal raw materials.


Subject(s)
Apiaceae/chemistry , Plant Extracts/analysis , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Candida albicans/drug effects , Edema/drug therapy , Flowers/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Phenols/isolation & purification , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Rats
10.
Chem Biodivers ; 13(4): 427-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26923468

ABSTRACT

Hypericum aegypticum subsp. webbii is an evergreen shrub spread in Mediterranean part of central and southeastern Europe. The chemical composition and antimicrobial activity of the essential oil and MeOH extract of H. aegypticum subsp. webbii were investigated. The monoterpenes α-pinene (63.4 - 68.5%) and ß-pinene (16.9 - 17.0%) were main compounds in the volatile oil from aerial parts. In the cluster analysis, the essential oil of H. aegypticum subsp. webbii was separated and chemically different from the oil of other subspecies of H. aegypticum as well as other Hypericum species from Greece. SIMPER analysis revealed that α-pinene (24.79%) was the component that contributed the most to differences between all oils. Also, there was extremely high overall dissimilarity between three subspecies of H. aegypticum. MeOH extract of aerial parts of H. aegypticum subsp. webbii contained flavonoids rutin (56.4 ± 0.9 mg/g), hyperoside and quercetin, and phenolic acids chlorogenic and caffeic acid, while naphthodianthrones were not detected. The antimicrobial activity of essential oil was moderate (MIC from 100 to >200 µg/ml), while MeOH extract inhibited the growth of Gram-positive bacteria Bacillus subtilis, Enterococcus faecalis, Staphylococcus epidermidis, and Micrococcus luteus (MIC 50 - 100 µg/ml), more pronounced than the extract of H. perforatum (MIC 200 - >200 µg/ml).


Subject(s)
Anti-Infective Agents/pharmacology , Hypericum/chemistry , Methanol/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Microbial Sensitivity Tests
11.
Chem Biodivers ; 12(1): 170-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25641845

ABSTRACT

The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 µg/ml), comparable to or even higher than that of thymol, which was used as reference compound.


Subject(s)
Anti-Infective Agents/pharmacology , Apiaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Gas Chromatography-Mass Spectrometry
12.
Pol J Microbiol ; 64(4): 379-82, 2015.
Article in English | MEDLINE | ID: mdl-26999958

ABSTRACT

Pathogenicity of methicillin-resistant Staphylococcus aureus (MRSA) is associated with a broad spectrum of virulence factors, amongst which is α-hemolysin. The aim of this study was to investigate the effect of three newly-synthesized chalcones (1,3- Bis-(2-hydroxy-phenyl)-propenone, 3-(3-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone and 3-(4-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone) on a-hemolysin production of clinical isolates of MRSA. Subinhibitory concentrations of the tested compounds reduced hemolytic activity of MRSA strains, with almost complete abolishment of hemolysis at concentrations in the range of 1/2-1/4 x MIC (25-12.5 µg/ml). In conclusion, newly-synthesized chalcones tested in this study showed potent inhibitory activity on α-hemolysin production of multiresistant and genetically diverse MRSA strains.


Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Chalcones/chemical synthesis , Chalcones/pharmacology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Hemolysis/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Chalcones/chemistry , Molecular Structure
13.
Molecules ; 16(8): 6645-55, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-25134768

ABSTRACT

Six ß-hydroxy-ß-aryl propanoic acids were synthesised using a modification of Reformatsky reaction which has already been reported. These acids belong to the aryl propanoic acid class of compounds, structurally similar to the NSAIDs, such as ibuprofen, and an anti-inflammatory activity is thus expected. The aim of this work was to determine anti-inflammatory activity, examine gastric tolerability, and to carry out molecular docking experiments to identify potential COX-2 inhibitors among the ß-hydroxy-ß-aryl propanoic acids, and to elucidate the effect α-methyl substitution on the anti-inflammatory activity. Anti-inflammatory activity and gastric tolerability were determined on rats using carrageenan induced paw oedema method, and docking studies were carried out using Autodock v4.0.1. The range of ED50 values is between 127 µmol/kg and 15 µmol/kg, while the result for ibuprofen is 51.7 µmol/kg. Only slight hyperaemia or few petechiae were spotted on rat's stomach. The results indicate that all compounds possess significant anti-inflammatory activity after oral administration, and that 2-methyl-3-hydroxy-3,3-diphenyl-propanoic acid has greatest activity, surpassing that of ibuprofen, a standard NSAID. Another compound, 3-hydroxy-3,3-diphenylpropanoic acid, shows activity matching that of ibuprofen, and is non-chiral and is proven to be non-toxic. The most of investigated compounds have interactions with P3 anchor site like COX-2 selective inhibitors. No tested substances or ibuprofen produced any significant gastric lesions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Molecular Docking Simulation , Propionates/pharmacology , Animals , Carrageenan , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Male , Models, Molecular , Propionates/chemical synthesis , Propionates/chemistry , Rats, Wistar , Stomach/drug effects , Stomach/pathology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...