Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 14(4): 873-88, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11936965

ABSTRACT

Markram and Tsodyks, by showing that the elevated synaptic efficacy observed with single-pulse long-term potentiation (LTP) measurements disappears with higher-frequency test pulses, have critically challenged the conventional assumption that LTP reflects a general gain increase. This observed change in frequency dependence during synaptic potentiation is called redistribution of synaptic efficacy (RSE). RSE is here seen as the local realization of a global design principle in a neural network for pattern coding. The underlying computational model posits an adaptive threshold rather than a multiplicative weight as the elementary unit of long-term memory. A distributed instar learning law allows thresholds to increase only monotonically, but adaptation has a bidirectional effect on the model postsynaptic potential. At each synapse, threshold increases implement pattern selectivity via a frequency-dependent signal component, while a complementary frequency-independent component nonspecifically strengthens the path. This synaptic balance produces changes in frequency dependence that are robustly similar to those observed by Markram and Tsodyks. The network design therefore suggests a functional purpose for RSE, which, by helping to bound total memory change, supports a distributed coding scheme that is stable with fast as well as slow learning. Multiplicative weights have served as a cornerstone for models of physiological data and neural systems for decades. Although the model discussed here does not implement detailed physiology of synaptic transmission, its new learning laws operate in a network architecture that suggests how recently discovered synaptic computations such as RSE may help produce new network capabilities such as learning that is fast, stable, and distributed.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Pattern Recognition, Automated , Synapses/physiology , Algorithms , Long-Term Potentiation , Models, Neurological , Receptors, Presynaptic/physiology
2.
Neural Netw ; 11(5): 793-813, 1998 Jul.
Article in English | MEDLINE | ID: mdl-12662783

ABSTRACT

Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, ART stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributed ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network for supervised learning. An implementation algorithm here describes one class of dARTMAP networks. This system incorporates elements of the unsupervised dART model, as well as new features, including a content-addressable memory (CAM) rule for improved contrast control at the coding field. A dARTMAP system reduces to fuzzy ARTMAP when coding is winner-take-all. Simulations show that dARTMAP retains fuzzy ARTMAP accuracy while significantly improving memory compression.

SELECTION OF CITATIONS
SEARCH DETAIL
...