Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 8302, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859330

ABSTRACT

Current research implicates pre- and probiotic supplementation as a potential tool for improving symptomology in physical and mental ailments, which makes it an attractive concept for clinicians and consumers alike. Here we focus on the transitional period of late adolescence and early adulthood during which effective interventions, such as nutritional supplementation to influence the gut microbiota, have the potential to offset health-related costs in later life. We examined multiple indices of mood and well-being in 64 healthy females in a 4-week double blind, placebo controlled galacto-oligosaccharides (GOS) prebiotic supplement intervention and obtained stool samples at baseline and follow-up for gut microbiota sequencing and analyses. We report effects of the GOS intervention on self-reported high trait anxiety, attentional bias, and bacterial abundance, suggesting that dietary supplementation with a GOS prebiotic may improve indices of pre-clinical anxiety. Gut microbiota research has captured the imagination of the scientific and lay community alike, yet we are now at a stage where this early enthusiasm will need to be met with rigorous research in humans. Our work makes an important contribution to this effort by combining a psychobiotic intervention in a human sample with comprehensive behavioural and gut microbiota measures.


Subject(s)
Anti-Anxiety Agents , Anxiety/prevention & control , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Healthy Volunteers , Prebiotics , Trisaccharides/pharmacology , Adolescent , Adult , Female , Humans , Prebiotics/administration & dosage , Trisaccharides/administration & dosage , Young Adult
2.
Brain Stimul ; 12(4): 967-977, 2019.
Article in English | MEDLINE | ID: mdl-30833217

ABSTRACT

BACKGROUND: High-frequency transcranial random noise stimulation (hf-tRNS) is a neuromodulatory technique consisting of the application of alternating current at random intensities and frequencies. hf-tRNS induces random neural activity in the system that may boost the sensitivity of neurons to weak inputs. Stochastic resonance is a nonlinear phenomenon whereby the addition of an optimal amount of noise results in performance enhancement, whereas further noise increments impair signal detection or discrimination. OBJECTIVE: The aim of the study was to assess whether modulatory effects of hf-tRNS rely on the stochastic resonance phenomenon, and what is the specific neural mechanism producing stochastic resonance. METHOD: Observers performed a two-interval forced choice motion direction discrimination task in which they had to report whether two moving patches presented in two temporal intervals had the same or different motion directions. hf-tRNS was administered at five intensity levels (0.5, 0.75, 1.0, 1.5, and 2.25 mA). RESULTS: The results showed a significant improvement in performance when hf-tRNS was applied at 1.5 mA, representing the optimal level of external noise. However, stimulation intensity at 2.25 mA significantly impaired direction discrimination performance. An equivalent noise (EN) analysis, used to assess how hf-tRNS modulates the mechanisms underlying global motion processing, showed an increment in motion signal integration with the optimal current intensity, but reduced motion signal integration at 2.25 mA. CONCLUSION: These results indicate that hf-tRNS-induced noise modulates neural signal-to-noise ratio in a way that is compatible with the stochastic resonance phenomenon.


Subject(s)
Motion Perception/physiology , Noise , Photic Stimulation/methods , Transcranial Direct Current Stimulation/methods , Adolescent , Adult , Female , Humans , Male , Stochastic Processes , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...