Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 671: 587-597, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30933815

ABSTRACT

The surface mining of oil sands north of Fort McMurray, Alberta produces considerable tailings waste that is stored in large tailings ponds on industrial lease sites. Viable strategies for the detoxification of oil sands process affected water (OSPW) are under investigation. In order to assess the toxic potential of the suite of dissolved organics in OSPW, a method for their extraction and fractionation was developed using solid phase extraction. The method successfully isolated organic compounds from 180 L of an aged OSPW source. Using acidic- or alkaline-conditioned non-polar ENV+ resin and soxhlet extraction with ethyl acetate and methanol, three fractions (F1-F3) were generated. Chemical characterization of the generated fractions included infusion to electrospray ionization ultrahigh-resolution mass spectrometry (ESI-UHRMS), liquid chromatography quadrupole time-of-flight mass spectrometry, gas chromatography triple quadrupole time-of-flight mass spectrometry, and synchronous fluorescence spectroscopy (SFS). Additionally, ESI-UHRMS class distribution data and SFS identified an increased degree of oxygenation and aromaticity, associated with increased polarity. Method validation, which included method and matrix spikes with surrogate and labelled organic mono carboxylic acid standards, confirmed separation according to acidity and polarity with generally good recoveries (average 76%). Because this method is capable of extracting large sample volumes, it is amenable to thorough chemical characterization and toxicological assessments with a suite of bioassays. As such, this protocol will facilitate effects-directed analysis of toxic components within bitumen-influenced waters from a variety of sources.

2.
Water Sci Technol ; 55(6): 191-8, 2007.
Article in English | MEDLINE | ID: mdl-17486851

ABSTRACT

This paper forms part of series of biological treatment colour behaviour studies. Surveys across a range of mills have observed colour increases in aerated stabilisation basins of 20-45%. Much of the colour formation has been demonstrated to occur in high molecular mass effluent organic constituents (HMM) present in bleach plant effluents. Removing material greater than 3000 Da essentially eliminated the colour forming ability in both E and D stage wastewaters. We have also shown that pulp and paper sludges contain anaerobic bacteria capable of reducing humic like materials. Colour formation was correlated to the anoxic conditions and the availability of readily biodegradable organic constituents during the wastewater treatment process. Overall, these studies suggest that colour formation in pulp and paper biological treatment systems may be caused by anaerobic bacteria using HMM material from the bleaching effluents as an electron acceptor for growth. This leads to the reduction of the material, which in turn leads to non-reversible internal changes, such as intra-molecular polymerisation or formation of chromophoric functional groups.


Subject(s)
Industrial Waste , Organic Chemicals/chemistry , Waste Disposal, Fluid/methods , Water Pollutants/metabolism , Bacteria, Anaerobic/physiology , Biodegradation, Environmental , Bioreactors/microbiology , Chromatography, Gel , Color , Humic Substances/analysis , Hypoxia , Molecular Weight , Oxidation-Reduction , Paper , Sewage/microbiology , Ultrafiltration , Wood
3.
Water Sci Technol ; 50(3): 87-94, 2004.
Article in English | MEDLINE | ID: mdl-15461402

ABSTRACT

Colour discharges are gaining renewed focus in the pulp and paper industry as increasingly strict regulatory limits are placed on wastewater quality and aesthetics. In-mill process improvements, such as ECF bleaching and oxygen delignification, have decreased wastewater colour loadings. However, a survey of 12 pulp and paper mill systems found that effluent treatment using aerated stabilisation basins (ASB) leads to average increases in colour of 20-40%. In some instances, this phenomenon may even double the influent colour levels. Activated sludge systems did not produce a colour increase. The measured increases that follow ASB secondary treatment may be sufficient for a mill to fail prescribed discharge standards. A detailed field survey focusing on sections of an integrated bleached kraft mill ASB treatment system was undertaken. The average increase in colour at the final point of discharge was 45%. The major changes in colour concentration occurred in the inlet to the main treatment pond, and in polishing ponds that followed the main treatment pond. Both of these areas receive little or no aeration. No significant change was observed in the highly aerated main pond. These results, along with literature reports, suggested that redox conditions play a major role in influencing colour behaviour. To test this, two series of paired continuously stirred reactors were used to treat whole mill effluent from two ECF bleached kraft mills in parallel. The first series initially treated under anaerobic conditions, followed by an aerobic reactor, while the second series reversed this order. With the initial anaerobic stage, effluent colour increased by 18% and 19% for the first and second series respectively. Subsequent treatment by aerobic bacteria further increased colour by 14% and 6%, for a total increase of 32% and 25%. Initial aerobic treatment, however, did not lead to any significant change in colour for either effluent. Further anaerobic treatment following aerobic conditions produced only small increases in colour. These results are consistent with the ASB and activated sludge system survey, suggesting that anaerobic conditions at the head of treatment systems initiate the observed increases in effluent colour in ASB treatment systems.


Subject(s)
Bioreactors , Pigments, Biological/analysis , Waste Disposal, Fluid/methods , Bacteria, Anaerobic/physiology , Color , Industrial Waste , Paper , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...