Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 931, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195807

ABSTRACT

We demonstrate a Ramsey-type microwave clock interrogating the 6.835 GHz ground-state transition in cold [Formula: see text]Rb atoms loaded from a grating magneto-optical trap (GMOT) enclosed in an additively manufactured loop-gap resonator microwave cavity. A short-term stability of [Formula: see text] is demonstrated, in reasonable agreement with predictions from the signal-to-noise ratio of the measured Ramsey fringes. The cavity-grating package has a volume of [Formula: see text]67 cm[Formula: see text], ensuring an inherently compact system while the use of a GMOT drastically simplifies the optical requirements for laser cooled atoms. This work is another step towards the realisation of highly compact portable cold-atom frequency standards.

2.
Opt Express ; 21(5): 5781-92, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482148

ABSTRACT

We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 µW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL's measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL's typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time..

3.
Opt Express ; 19(4): 3106-14, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369132

ABSTRACT

Through the detection of Coherent Population Trapping (CPT) resonances, we demonstrate the temperature-dependence cancellation of the Cs clock frequency in microfabricated vapor cells filled with a mixture of Ne and Ar. The inversion temperature at which the Cs clock frequency temperature sensitivity is greatly reduced only depends on the partial pressure of buffer gases and is measured to be lower than 80°C as expected with simple theoretical calculations. These results are important for the development of state-of-the-art Cs vapor cell clocks with improved long-term frequency stability.

4.
Article in English | MEDLINE | ID: mdl-18238562

ABSTRACT

We report on the primary frequency standard now under construction at the Observatoire de Neuchatel (ON). The design is based on a continuous fountain of laser-cooled cesium atoms, which combines two advantages: the negligible contribution of collisions to the inaccuracy and the absence of stability degradation caused by aliasing effects encountered in pulsed operation. The design is reviewed with special emphasis on the specific features of a continuous fountain, namely the source, the microwave cavity (TE(021) mode), and the microwave modulation scheme. The possible sources of frequency biases and their expected contributions to the error budget are discussed. Based on present data, an accuracy in the low 10(-15) range and a short-term stability of 7.10(-14) are attainable simultaneously under the same operating conditions.

5.
Appl Opt ; 39(9): 1426-9, 2000 Mar 20.
Article in English | MEDLINE | ID: mdl-18338027

ABSTRACT

An extended-cavity diode laser at 852 nm has been built especially for the purpose of cooling and probing cesium atoms. It is a compact, self-aligned, and continuously tunable laser source having a 100-kHz linewidth and 60-mW output power. The electronic control of the laser frequency by the piezodriven external reflector covers a 4.5-kHz bandwidth, allowing full compensation of acoustic frequency noise without any adverse effect on the laser intensity noise. We locked this laser to Doppler-free resonances on the cesium D(2) line by using the Zeeman modulation technique, resulting in the frequency and the intensity of the laser beam being unmodulated. We also tuned the locked laser frequency over a span of 120 MHz by using the dc Zeeman effect to shift the F = 4-F' = 5 reference transition.

6.
Phys Rev A ; 44(7): 4280-4295, 1991 Oct 01.
Article in English | MEDLINE | ID: mdl-9906466
SELECTION OF CITATIONS
SEARCH DETAIL
...