Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 215(3): 107990, 2023 09.
Article in English | MEDLINE | ID: mdl-37364763

ABSTRACT

Particle localization (picking) in digital tomograms is a laborious and time-intensive step in cryogenic electron tomography (cryoET) analysis often requiring considerable user involvement, thus becoming a bottleneck for automated cryoET subtomogram averaging (STA) pipelines. In this paper, we introduce a deep learning framework called PickYOLO to tackle this problem. PickYOLO is a super-fast, universal particle detector based on the deep-learning real-time object recognition system YOLO (You Only Look Once), and tested on single particles, filamentous structures, and membrane-embedded particles. After training with the centre coordinates of a few hundred representative particles, the network automatically detects additional particles with high yield and reliability at a rate of 0.24-3.75 s per tomogram. PickYOLO can automatically detect number of particles comparable to those manually selected by experienced microscopists. This makes PickYOLO a valuable tool to substantially reduce the time and manual effort needed to analyse cryoET data for STA, greatly aiding in high-resolution cryoET structure determination.


Subject(s)
Deep Learning , Electrons , Reproducibility of Results , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods
2.
Nat Commun ; 12(1): 1546, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750771

ABSTRACT

Many bacterial pathogens rely on virulent type III secretion systems (T3SSs) or injectisomes to translocate effector proteins in order to establish infection. The central component of the injectisome is the needle complex which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to mediate effector protein translocation. However, the molecular principles underlying type III secretion remain elusive. Here, we report a structure of an active Salmonella enterica serovar Typhimurium needle complex engaged with the effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unraveling the critical role of the export apparatus (EA) subcomplex in type III secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent substrate transport. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates while preventing leaky pore formation. Following gate penetration, a moveable SpaR loop first folds up to then support substrate transport. Together, these findings establish the molecular basis for substrate translocation through T3SSs and improve our understanding of bacterial pathogenicity and motility.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Transport/physiology , Salmonella typhimurium/metabolism , Type III Secretion Systems/chemistry , Type III Secretion Systems/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Cryoelectron Microscopy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Protein Conformation, alpha-Helical , Salmonella enterica/metabolism , Salmonella typhimurium/genetics , Type III Secretion Systems/genetics
3.
Curr Top Microbiol Immunol ; 427: 67-90, 2020.
Article in English | MEDLINE | ID: mdl-31667599

ABSTRACT

The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.


Subject(s)
Type III Secretion Systems/chemistry , Bacterial Proteins , Computer Simulation , Cryoelectron Microscopy , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Type III Secretion Systems/ultrastructure , Virulence Factors
4.
Biotechnol J ; 12(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28869356

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the risk of food contamination; however, veterinary vaccines against EHEC such as Econiche have not been widely adopted by the agricultural industry, and have been discontinued, prompting the need for more cost-effective EHEC vaccines. The objective of this project is to develop a platform to produce plant-made antigens for oral vaccination of ruminants against EHEC. Five recombinant proteins were designed as vaccine candidates and expressed transiently in Nicotiana benthamiana and transplastomically in Nicotiana tabacum. Three of these EHEC proteins, NleA, Stx2b, and a fusion of EspA accumulated when transiently expressed. Transient protein accumulation was the highest when EHEC proteins were fused to an elastin-like polypeptide (ELP) tag. In the transplastomic lines, EspA accumulated up to 479 mg kg-1 in lyophilized leaf material. Sheep that were administered leaf tissue containing recombinant EspA shed less E. coli O157:H7 when challenged, as compared to control animals. These results suggest that plant-made, transgenic EspA has the potential to reduce EHEC shedding in ruminants.


Subject(s)
Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Vaccines/biosynthesis , Nicotiana/genetics , Plants, Genetically Modified/genetics , Ruminants/microbiology , Vaccines, Subunit/biosynthesis , Administration, Oral , Animals , Disease Models, Animal , Enterohemorrhagic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/immunology , Escherichia coli Vaccines/administration & dosage , Escherichia coli Vaccines/genetics , Escherichia coli Vaccines/immunology , Feces/microbiology , Gene Expression Regulation, Plant , Immunization , Male , Plant Leaves/chemistry , Plants, Genetically Modified/metabolism , RNA, Messenger/biosynthesis , Recombinant Proteins , Sheep , Shiga Toxin 2/genetics , Nicotiana/chemistry , Vaccination , Virulence Factors/genetics
6.
Front Plant Sci ; 8: 283, 2017.
Article in English | MEDLINE | ID: mdl-28321227

ABSTRACT

Type 3 secretion systems (T3SSs) are utilized by pathogenic Escherichia coli to infect their hosts and many proteins from these systems are affected by chaperones specific to T3SS-containing bacteria. Toward developing a recombinant vaccine against enterohaemorrhagic E. coli (EHEC), we expressed recombinant T3SS and related proteins from predominant EHEC serotypes in Nicotiana chloroplasts. Nicotiana benthamiana were transiently transformed to express chloroplast-targeted Tir, NleA, and EspD from the EHEC serotype O157:H7; a fusion of EspA proteins from serotypes O157:H7 and O26:H11; and a fusion of epitopes of Tir (Tir-ep) from serotypes O157:H7, O26:H11, O45:H2, and O111:H8. C-terminal GFP reporter fusion constructs were also developed and transiently expressed to confirm subcellular localization and quantify relative expression levels in situ. Recombinant proteins were co-expressed with chaperones specific to each T3SS protein with the goal of increasing their accumulation in the chloroplast. We found that co-expression with the chloroplast-targeted chaperone CesT significantly increases accumulation of recombinant Tir when the latter is either transiently expressed in the nucleus and targeted to the chloroplast of N. benthamiana or stably expressed in transplastomic Nicotiana tabacum. CesT also helped maintain higher levels of Tir:GFP fusion protein over time both in vivo and ex vivo, indicating that the favorable effect of CesT on accumulation of Tir is not specific to a single time point or to fresh material. By contrast, T3SS chaperones CesT, CesAB, CesD, and CesD2 did not increase accumulation of NleA:GFP, EspA:GFP, or EspD:GFP, which suggests dissimilar functioning of these chaperone-substrate combinations. CesT did not increase accumulation of Tir-ep:GFP, which may be due to the absence of the CesT binding domain from this fusion protein. The fusion to GFP improved accumulation of Tir-ep relative to the unfused protein, but not for the other recombinant proteins. These results emphasize the importance of native chaperones and stabilizing fusions as potential tools for the production of higher levels of recombinant proteins in plants; and may have implications for understanding interactions between T3SS chaperones and their substrates. In particular, our findings highlight the potential of T3SS chaperones to increase accumulation of recombinant T3SS proteins in heterologous systems.

7.
Front Plant Sci ; 6: 1221, 2015.
Article in English | MEDLINE | ID: mdl-26779243

ABSTRACT

The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens.

SELECTION OF CITATIONS
SEARCH DETAIL
...