Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 16(11): e0010754, 2022 11.
Article in English | MEDLINE | ID: mdl-36409739

ABSTRACT

BACKGROUND: A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-eastern Australia in 2022. This study reports the detection, whole genome sequencing and analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021). METHODS: Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain specimens was attempted by inoculation of mosquito and mammalian cells or embryonated chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina next generation sequencing methodologies, including a tiling amplicon approach. Phylogenetic and selection analyses were performed using alignments of the Tiwi Islands JEV genome and envelope (E) protein gene sequences and publicly available JEV sequences. RESULTS: Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Australian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7-96.8%). The most recent common ancestor of this Australian-Indonesian clade was estimated to have emerged in 2007 (95% HPD range: 1998-2014). Positive selection was detected using two methods (MEME and FEL) at several sites in the E and non-structural protein genes, including a single site in the E protein (S194N) unique to the Australian GIV strains. CONCLUSION: This case represents the first detection of GIV JEV acquired in Australia, and only the second confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relationship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin of this novel GIV lineage, which we estimate has circulated in the region for several years prior to the Tiwi Islands case.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Animals , Humans , Phylogeny , Encephalitis, Japanese/epidemiology , Genotype , Nucleotides , Northern Territory , Mammals
2.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Article in English | MEDLINE | ID: mdl-35536868

ABSTRACT

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Australia/epidemiology , Birds , Ducks , Genetic Variation , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny
3.
Ticks Tick Borne Dis ; 13(3): 101909, 2022 05.
Article in English | MEDLINE | ID: mdl-35114560

ABSTRACT

Ehrlichia canis (Rickettsiales; Anaplasmataceae) is one of the most prevalent tick-borne pathogens of dogs globally. The bacterium infects monocytes and is the aetiological agent of canine monocytic ehrlichiosis. For many decades Australia was thought to be free of the pathogen, but this abruptly changed in May 2020 when E. canis was detected in several dogs from Kununurra, Western Australia. Subsequent surveillance activities found unexpectedly large scale spread of E. canis throughout much of northern Australia. To gain insight into the genetic relationships of the Australian strain and its potential origin, we undertook a genomic analysis of E. canis positive domestic dog and tick (Rhipicephalus linnaei) samples from the north of Western Australia, the far north of South Australia and the Northern Territory, covering thousands of square kilometres. We obtained complete E. canis genomes from each of the three states, plus an additional 16 partial genomes, substantially increasing publicly available E. canis genetic resources. The Australian E. canis genomes were highly conserved across large geographic distances. Outside of Australia, the genomes were most similar to E. canis YZ-1 from China, although few reference sequences were available. We analysed the variable trp36 gene to obtain greater phylogenetic signal, which demonstrated that the Australian E. canis belonged to the Taiwan genotype, comprised of samples from Taiwan, China, Thailand and Turkey. Taken together, our findings suggest that E. canis in Australia may have originated from Asia or the Middle East and spread throughout northern and central Australia following its introduction.


Subject(s)
Dog Diseases , Ehrlichiosis , Animals , Australia/epidemiology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Dogs , Ehrlichia/genetics , Ehrlichia canis/genetics , Ehrlichiosis/epidemiology , Ehrlichiosis/microbiology , Ehrlichiosis/veterinary , Genomics , Phylogeny , Thailand , Turkey
4.
Microbiol Resour Announc ; 10(26): e0026321, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34197195

ABSTRACT

Here, we report the complete genome sequence of the African swine fever virus (ASFV) isolate ASFV/Timor-Leste/2019/1, isolated from a domestic pig during the first outbreak of ASF in Timor-Leste in 2019. Using target enrichment short-read Illumina data combined with long-read Oxford Nanopore data, we assembled a full-length genome sequence of 192,237 bp.

SELECTION OF CITATIONS
SEARCH DETAIL
...