Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(1): 753-772, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38248351

ABSTRACT

Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish.

2.
Animals (Basel) ; 13(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38136853

ABSTRACT

The use of organic ingredients as a source of protein in aquaculture diets has gained significant attention due to the growing demand for organic seafood products. This study aimed to evaluate the potential for the use of organic ingredients as protein sources in the diet of juvenile organic seabass (Dicentrarchus labrax). A total of 486 juvenile seabass with an average weight of 90 g were fed six diets containing varied organic proteins. The control group (CON) was fed a diet with conventional fishmeal from sustainable fisheries as the primary protein source. The other five groups were fed diets with different compositions: organic Iberian pig meal byproduct (IB diet), a combination of organic Iberian pig meal byproduct and insect meal (IB-IN diet), a mix of organic Iberian pig meal byproduct and organic rainbow trout meal byproduct (IB-TR diet), a blend of organic rainbow trout meal byproduct and insect meal (TR-IN), and a mixed diet containing all of these protein sources (MIX diet). Over a 125-day feeding trial, growth performance, feed utilisation, feed digestibility, and histological parameters were assessed. The results showed that the fish fed the control diet had the highest final weight and specific growth rate, followed by the fish fed the TR-IN and IB-TR diets. The IB-TR diet had the highest apparent digestibility coefficients (ADCs) for protein, while the TR-IN diet had the lowest. Histological analysis revealed that fish fed the control diet had the largest nucleus diameter and hepatocyte diameter. Use of IN seems to penalise performance in several ways. Fish fed diets containing insect meal grew less, and those diets had lower digestibility. Fish fed the TR and IB diets grew at rates near that of the control, and the feed had acceptable digestibility.

3.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047740

ABSTRACT

The present study was conducted to investigate the effects of dietary fish oil replacement with a mixture of vegetable oils and probiotic supplementation on plasma biochemical parameters, oxidative stress, and antioxidant ability of Seriola dumerili. Specimens with an initial weight of 175 g were used. Four feeds were formulated with 0% (FO-100), 75% (FO-25), and 100% (FO-0 and FO-0+ with the addition of Lactobacillus probiotics) substitution of fish oil with a mixture of linseed, sunflower, and palm oils. After 109 days, no significant differences were observed in the activity of antioxidant enzymes in the liver, foregut, and hindgut, only glucose-6-phosphate dehydrogenase activity in the liver was higher in the fish fed the FO-100 diet than in those fed the FO-0 diet. No significant differences were observed in the total, reduced, and oxidized glutathione and the oxidative stress index in the liver. In addition, lipid peroxidation in the liver and red muscle values were higher in the fish fed the FO-100 diet than in the fish fed the FO-0+ diet, however, the foregut of the fish fed the FO-100 diet presented lower values than that of the fish fed the FO replacement diet, with and without probiotics. There were significant differences in cholesterol levels in the FO-100 group; they were significantly higher than those observed with the fish diets without fish oil. To sum up, fish oil can be replaced by up to 25% with vegetable oils in diets for Seriola dumerili juveniles, but total fish oil substitution is not feasible because it causes poor survival. The inclusion of probiotics in the FO-0+ diet had no effects on the parameters measured.


Subject(s)
Perciformes , Probiotics , Animals , Fish Oils/pharmacology , Fish Oils/metabolism , Antioxidants/pharmacology , Plant Oils/pharmacology , Plant Oils/metabolism , Diet , Liver/metabolism , Muscles , Oxidative Stress , Probiotics/pharmacology
4.
Animals (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200403

ABSTRACT

This study was conducted to evaluate the apparent availability and P and N excretion in rainbow trout (Oncorhynchus mykiss) using different inorganic phosphorus sources. With this goal, fish (153 ± 14.1 g) fed four inorganic P sources were assayed: monoammonium phosphate (MAP, NH4H2PO4), monosodium/monocalcium phosphate (SCP-2%, AQphos+, NaH2PO4/Ca(H2PO4)2·H2O in proportion 12/88), monosodium/monocalcium phosphate (SCP-5%, NaH2PO4/Ca(H2PO4)2·H2O in proportion 30/70) and monocalcium phosphate (MCP, Ca(H2PO4)2·H2O). Phosphorus (P) digestibility, in diets that included MAP and SCP-2% as inorganic phosphorus sources, were significantly higher than for SCP-5% and MCP sources. In relation to the P excretion pattern, independent of the diet, a peak at 6 h after feeding was registered, but at different levels depending on inorganic P sources. Fish fed an MAP diet excreted a higher amount of dissolved P in comparison with the rest of the inorganic P sources, although the total P losses were lower in MAP and SCP-2% (33.02% and 28.13, respectively) than in SCP-5% and MCP sources (43.35% and 47.83, respectively). Nitrogen (N) excretion was also studied, and the fish fed an SCP-5% diet provided lower values (15.8%) than MAP (28.0%). When N total wastes were calculated, SCP-2% and SCP-5% showed the lowest values (31.54 and 28.25%, respectively). In conclusion, based on P and N digestibility and excretion, the SCP-2% diet showed the best results from a nutritional and environmental point of view.

SELECTION OF CITATIONS
SEARCH DETAIL
...