Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Neurobiol ; 6: 100121, 2024.
Article in English | MEDLINE | ID: mdl-38616956

ABSTRACT

Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.

2.
Cells ; 12(13)2023 07 05.
Article in English | MEDLINE | ID: mdl-37443820

ABSTRACT

In multiple sclerosis (MS), glial cells astrocytes interact with the autoreactive immune cells that attack the central nervous system (CNS), which causes and sustains neuroinflammation. However, little is known about the direct interaction between these cells when they are in close proximity in the inflamed CNS. By using an experimental autoimmune encephalomyelitis (EAE) model of MS, we previously found that in the proximity of autoreactive CNS-infiltrated immune cells (CNS-IICs), astrocytes respond with a rapid calcium increase that is mediated by the autocrine P2X7 receptor (P2X7R) activation. We now reveal that the mechanisms regulating this direct interaction of astrocytes and CNS-IICs involve the coupling between P2X7R, connexin-43, and ß3-integrin. We found that P2X7R and astroglial connexin-43 interact and concentrate in the immediate proximity of the CNS-IICs in EAE. P2X7R also interacts with ß3-integrin, and the block of astroglial αvß3-integrin reduces the P2X7R-dependent calcium response of astrocytes upon encountering CNS-IICs. This interaction was dependent on astroglial mitochondrial activity, which regulated the ATP-driven P2X7R activation and facilitated the termination of the astrocytic calcium response evoked by CNS-IICs. By further defining the interactions between the CNS and the immune system, our findings provide a novel perspective toward expanding integrin-targeting therapeutic approaches for MS treatment by controlling the cell-cell interactions between astrocytes and CNS-IICs.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Astrocytes , Receptors, Purinergic P2X7 , Integrin beta3 , Calcium , Cell Communication
3.
J Integr Neurosci ; 22(6): 160, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38176939

ABSTRACT

BACKGROUND: Population voltage imaging is used for studying brain physiology and brain circuits. Using a genetically encoded voltage indicator (GEVI), "VSFP" or "ASAP2s", or a voltage-sensitive dye, Di-4-Anepps, we conducted population voltage imaging in brain slices. The resulting optical signals, optical local field potentials (LFPs), were used to evaluate the performances of the 3 voltage indicators. METHODS: In brain slices prepared from VSFP-transgenic or ASAP2s-transgenic mice, we performed multi-site optical imaging of evoked cortical depolarizations - compound excitatory postsynaptic potentials (cEPSPs). Optical signal amplitudes (ΔF/F) and cEPSP decay rates (OFF rates) were compared using analysis of variance (ANOVA) followed by unpaired Student's t test (31-104 data points per voltage indicator). RESULTS: The ASAP2s signal amplitude (ΔF/F) was on average 3 times greater than Di-4-Anepps, and 7 times greater than VSFP. The optical cEPSP decay (OFF rate) was the slowest in Di-4-Anepps and fastest in ASAP2s. When ASAP2s expression was weak, we observed slow, label-free (autofluorescence, metabolic) optical signals mixed into the ASAP2s traces. Fast hyperpolarizations, that typically follow depolarizing cortical transients (afterhyperpolarizations), were prominent in ASAP2s but not present in the VSFP and Di-4-Anepps experiments. CONCLUSIONS: Experimental applications for ASAP2s may potentially include systems neuroscience studies that require voltage indicators with large signal amplitude (ΔF/F), fast decay times (fast response time is needed for monitoring high frequency brain oscillations), and/or detection of brain patches in transiently hyperpolarized states (afterhyperpolarization).


Subject(s)
Optical Imaging , Pyridinium Compounds , Mice , Animals , Mice, Transgenic
4.
J Neurosci Res ; 98(11): 2317-2332, 2020 11.
Article in English | MEDLINE | ID: mdl-32799373

ABSTRACT

Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Immunity, Cellular , Receptors, Purinergic/immunology , Adenosine Triphosphate/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Neuroglia/metabolism , Rats , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Spinal Cord/cytology , Spinal Cord/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...