Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109925

ABSTRACT

As the industry develops and energy demand increases, wind turbines are increasingly being used to generate electricity, resulting in an increasing number of obsolete turbine blades that need to be properly recycled or used as a secondary raw material in other industries. The authors of this work propose an innovative technology not yet studied in the literature, where the wind turbine blades are mechanically shredded and micrometric fibers are formed from the obtained powder using plasma technologies. As shown by SEM and EDS studies, the powder is composed of irregularly shaped microgranules and the carbon content in the obtained fiber is lower by up to seven times compared with the original powder. Meanwhile, the chromatographic studies show that no hazardous to the environment gases are formed during the fiber production. It is worth mentioning that this fiber formation technology can be one of the additional methods for recycling wind turbine blades, and the obtained fiber can be used as a secondary raw material in the production of catalysts, construction materials, etc.

2.
J Air Waste Manag Assoc ; 65(11): 1292-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26110540

ABSTRACT

UNLABELLED: The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. IMPLICATIONS: Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.


Subject(s)
Incineration/methods , Recycling/methods , Solid Waste/analysis , Lithuania , Microscopy, Electron, Scanning , Sewage/chemistry , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...