Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Vasc Surg ; 14(3): 260-7, 2000 May.
Article in English | MEDLINE | ID: mdl-10796958

ABSTRACT

Adult human saphenous vein endothelial cells (HVEC) were cultured in a compliant tubular device and evaluated by Northern hybridization for the effects of combined pressurized pulsatile flow and cyclic strain on the expression of mRNAs for endothelin-1 (ET-1), endothelial cell nitric oxide synthase (ecNOS), tissue plasminogen activator (tPA), and plasminogen activator inhibitor type 1 (PAI-1). The hemodynamic environment was designed to mimic shear stress conditions at the distal anastomosis of a saphenous vein graft, a common site of intimal proliferation. Steady-state mRNA levels in experimental tubes were expressed relative to that in controls. No changes were observed in ET-1 mRNA after 1 and 24 hr, but a 50% decrease in experimental cultures was observed after 48 hr in the vascular simulating device. Similar results were obtained for ecNOS mRNA, although a subgroup (4 of 11) showed a significant decrease (>50%) by 24 hr. For tPA mRNA, no change was observed after 1 hr, but a significant decrease (>60%) was measured after 24 hr and no message was detectable after 48 hr. Steady-state levels for PAI-1 mRNA remained unchanged through 48 hr of treatment. These results show that pressure, pulsatile flow, and cyclic strain, when applied in concert, differentially alter vasoactive and fibrinolytic functions in HVEC. Moreover, the dramatic decrease in steady-state levels of tPA mRNA is consistent with a shift toward an increased thrombotic state.


Subject(s)
Endothelin-1/biosynthesis , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Nitric Oxide Synthase/biosynthesis , Plasminogen Activator Inhibitor 1/biosynthesis , Saphenous Vein/metabolism , Tissue Plasminogen Activator/biosynthesis , Adult , Gene Expression , Humans , Nitric Oxide Synthase Type III , Pulsatile Flow , RNA, Messenger/metabolism , Saphenous Vein/transplantation , Stress, Mechanical
2.
J Vasc Surg ; 20(2): 184-94, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8040941

ABSTRACT

PURPOSE: Cellular constituents of the blood vessel wall are continuously subjected, in vivo, to both mechanical and hemodynamic forces, which elicit structural and biologic responses. We have developed a compliant tubular system, the vascular simulating device (VSD), that reproduces these forces, while supporting the attachment and the experimental manipulation of endothelial and smooth muscle cells. METHODS: The VSD consists of a compliant silicone rubber tube coupled to a pump system, which permits the simultaneous application of known levels of pressure and flow, to vascular wall cells cultured on the inner surface of the tube. Seeded cells can be monitored visually under phase contrast or fluorescent optics, as well as harvested and analyzed for biologic responses. RESULTS: The elastic modulus and compliance of the silicone rubber tube are similar to those of canine and human arteries. Endothelial and smooth muscle cells cultured on the lumenal surface of the tubes remain attached and viable after subjecting them to physiologic pulsatile flow and cyclic strain. CONCLUSION: The VSD makes it possible to approximate, in vitro, those forces encountered by vascular wall cells, in vivo and therefore may make it possible to determine whether specific combinations of mechanical and hemodynamic forces are causally associated with specific vascular diseases.


Subject(s)
Blood Vessels/physiology , Models, Cardiovascular , Animals , Blood Flow Velocity , Blood Vessels/cytology , Carotid Arteries/physiology , Compliance , Dogs , Models, Structural , Silicones , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...