Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 112(32): 9729-35, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18646796

ABSTRACT

We study the magnetic properties of two new functionalized single-molecule magnets belonging to the Mn 6 family (general formula [Mn (III)6O2(R-sao)6(O2C-th)2L(4-6)], where R=H (1) or Et (2), HO2C-th=3-thiophene carboxylic acid, L=EtOH, H2O and saoH2 is salicylaldoxime) and their grafting on the Au(111) surface. Complex 1 exhibits spin ground-state S=4, as the result of ferromagnetic coupling between the two antiferromagnetic Mn (III) 3 triangles, while slight structural changes in complex 2, switch the dominant magnetic exchange interactions from anti- to ferromagnetic, enhancing the spin ground-state to S=12 and, consequently, the effective energy barrier for the relaxation of magnetization. Direct-current and alternating-current magnetic susceptibility measurements show that the functionalized complexes preserve the main magnetic properties of the corresponding not-functionalized Mn 6 clusters (i.e., total spin value and magnetic behavior as a function of temperature), though a reduction of the anisotropy barrier is observed in complex 2. For both complexes, the -O2C-th functionalization allows the direct grafting on Au(111) surface by liquid-phase deposition. X-ray photoemission spectroscopy demonstrates that the stoichiometry of the molecular cores is preserved after grafting. Scanning tunneling microscopy (STM) reveals a sub-monolayer distribution of isolated clusters with a slightly higher coverage for complex 1. The cluster stability in the STM images and the S-2p energy positions demonstrate, for both derivatives, the strength of the grafting with the gold surface.

2.
Phys Rev Lett ; 100(15): 157203, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18518147

ABSTRACT

We study the spin dynamics in two variants of the high-anisotropy Mn6 nanomagnet by inelastic neutron scattering, magnetic resonance spectroscopy and magnetometry. We show that a giant-spin picture is completely inadequate for these systems and that excited S multiplets play a key role in determining the effective energy barrier for the magnetization reversal. Moreover, we demonstrate the occurrence of tunneling processes involving pair of states having different total spin.

SELECTION OF CITATIONS
SEARCH DETAIL
...