Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508410

ABSTRACT

This study aimed to elucidate whether muscle blood flow restriction during maximal exercise is associated with alterations in hemodynamics, cerebral oxygenation, cerebral activation, and deterioration of exercise performance in male participants. Thirteen healthy males, cyclists (age 33 ± 2 yrs., body mass: 78.6 ± 2.5 kg, and body mass index: 25.57 ± 0.91 kg·m-1), performed a maximal incremental exercise test on a bicycle ergometer in two experimental conditions: (a) with muscle blood flow restriction through the application of thigh cuffs inflated at 120 mmHg (with cuffs, WC) and (b) without restriction (no cuffs, NC). Exercise performance significantly deteriorated with muscle blood flow restriction, as evidenced by the reductions in V˙O2max (-17 ± 2%, p < 0.001), peak power output (-28 ± 2%, p < 0.001), and time to exhaustion (-28 ± 2%, p < 0.001). Muscle oxygenated hemoglobin (Δ[O2Hb]) during exercise declined more in the NC condition (p < 0.01); however, at exhaustion, the magnitude of muscle oxygenation and muscle deoxygenation were similar between conditions (p > 0.05). At maximal effort, lower cerebral deoxygenated hemoglobin (Δ[HHb]) and cerebral total hemoglobin (Δ[THb]) were observed in WC (p < 0.001), accompanied by a lower cardiac output, heart rate, and stroke volume vs. the NC condition (p < 0.01), whereas systolic blood pressure, rating of perceived exertion, and cerebral activation (as assessed by electroencephalography (EEG) activity) were similar (p > 0.05) between conditions at task failure, despite marked differences in exercise duration, maximal aerobic power output, and V˙O2max. In conclusion, in trained cyclists, muscle blood flow restriction during an incremental cycling exercise test significantly limited exercise performance. Exercise intolerance with muscle blood flow restriction was mainly associated with attenuated cardiac responses, despite cerebral activation reaching similar maximal levels as without muscle blood flow restriction.

2.
Appl Physiol Nutr Metab ; 46(10): 1216-1224, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33951406

ABSTRACT

This study tested the hypothesis that muscle blood flow restriction reduces muscle and cerebral oxygenation at rest. In 26 healthy males, aged 33 ± 2 yrs, physiological variables were continuously recorded during a 10-min period in 2 experimental conditions: a) with muscle blood flow restriction through thigh cuffs application inflated at 120 mm Hg (With Cuffs, WC) and b) without restriction (No Cuffs, NC). Muscle and cerebral oxygenation were reduced by muscle blood flow restriction as suggested by the increase in both muscle and cerebral deoxygenated hemoglobin (Δ[HHb]; p < 0.01) and the decrease of muscle and cerebral oxygenation index (Δ[HbDiff]; p < 0.01). Hemodynamic responses were not affected by such muscle blood flow restriction, whereas baroreflex sensitivity was reduced (p = 0.009). The perception of leg discomfort was higher (p < 0.001) in the WC than in the NC condition. This study suggests that thigh cuffs application inflated at 120 mm Hg is an effective method to reduce muscle oxygenation at rest. These changes at the muscular level seem to be sensed by the central nervous system, evoking alterations in cerebral oxygenation and baroreflex sensitivity. Novelty: Thigh cuffs application inflated at 120 mm Hg effectively reduces muscle oxygenation at rest. Limiting muscle oxygenation appears to reduce cerebral oxygenation, and baroreflex sensitivity, at rest. Even in healthy subjects, limiting muscle oxygenation, at rest, affects neural integration.


Subject(s)
Cerebrum/physiology , Hemodynamics , Muscle, Skeletal/blood supply , Oxygen Consumption , Regional Blood Flow , Adult , Arterial Pressure , Baroreflex , Constriction , Cross-Over Studies , Electroencephalography , Heart Rate , Humans , Male , Thigh/blood supply
3.
Int J Sports Med ; 42(1): 48-55, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32770536

ABSTRACT

Many studies have focused on heart rate variability in association with ventilatory thresholds. The purpose of the current study was to consider the ECG-derived respiration and the high frequency product of heart rate variability as applicable methods to assess the second ventilatory threshold (VT2). Fifteen healthy young soccer players participated in the study. Respiratory gases and ECGs were collected during an incremental laboratory test and in a multistage shuttle run test until exhaustion. VΤ2 was individually calculated using the deflection point of ventilatory equivalents. In addition, VT2 was assessed both by the deflection point of ECG-derived respiration and high frequency product. Results showed no statistically significant differences between VT2, and the threshold as determined with high frequency product and ECG-derived respiration (F(2,28)=0.83, p=0.45, η2=0.05). A significant intraclass correlation was observed for ECG-derived respiration (r=0.94) and high frequency product (r=0.95) with VT2. Similarly, Bland Altman analysis showed a considerable agreement between VT2 vs. ECG-derived respiration (mean difference of -0.06 km·h-1, 95% CL: ±0.40) and VT2 vs. high frequency product (mean difference of 0.02 km·h-1, 95% CL: ±0.38). This study suggests that, high frequency product and ECG-derived respiration are indeed reliable heart rate variability indices determining VT2 in a field shuttle run test.


Subject(s)
Anaerobic Threshold , Exercise Test/methods , Heart Rate , Pulmonary Gas Exchange , Running/physiology , Electrocardiography , Humans , Parasympathetic Nervous System/physiology , Soccer/physiology , Sympathetic Nervous System/physiology
4.
Physiol Rep ; 7(24): e14325, 2019 12.
Article in English | MEDLINE | ID: mdl-31883232

ABSTRACT

Thermoregulatory and cardiovascular responses during cycling in temperate and warm environments without and with application of capsaicin on the skin were investigated. We hypothesized that regardless of environmental temperature, capsaicin application would activate heat loss mechanisms attenuating exercise-induced rectal temperature (Tre) and blood pressure increase. Eight males cycled at 55% of their maximal aerobic power so long as to reach 38.2°C Tre at 20.8 ± 1.0°C and at 30.6 ± 1.1°C ambient temperatures twice: without (NCA) and with (CA) application of capsaicin patches (12 × 18 cm, 4.8 mg). Patches were applied on pectoralis major, trapezius and vastus lateralis muscles. Thermoregulatory (Tre, proximal-distal skin temperature gradient, sweating rate), cardiovascular variables and oxygen uptake were continuously recorded. In both ambient conditions, during the first 14 min of exercise, the local vasoconstrictive tone as a function of the relative change in Tre was lower in CA than NCA (p < .05, d = 0.84-1.15). Further, sweating rate was higher and occurred at a lower Tre increase in CA compared to NCA (p = .03, d = 0.6) resulting in extended time to reach 38.2°C Tre (p = .03, d = 0.9). Moreover, oxygen consumption was higher in CA than in NCA (p < .001, d = 0.8). Mean arterial pressure was lower during cycling in warm compared to temperate environment, but was unaffected by capsaicin. We conclude that activation of thermal sensors by capsaicin results in lower Tre rise during exercise, which is mediated through greater skin vasodilation along with higher rate and earlier onset of sweating. Nonetheless, capsaicin application has no extra effect on exercise cardiovascular responses.


Subject(s)
Arterial Pressure/drug effects , Capsaicin/pharmacology , Exercise , Sensory System Agents/pharmacology , Sweating/drug effects , Vasoconstriction/drug effects , Administration, Cutaneous , Capsaicin/administration & dosage , Hot Temperature , Humans , Male , Muscle, Skeletal/physiology , Oxygen Consumption/drug effects , Sensory System Agents/administration & dosage , Young Adult
5.
Eur J Appl Physiol ; 119(11-12): 2513-2527, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31555926

ABSTRACT

PURPOSE: Hypoxic acclimation enhances convective oxygen delivery to the muscles. Heat acclimation-elicited thermoregulatory benefits have been suggested not to be negated by adding daily exposure to hypoxia. Whether concomitant acclimation to both heat and hypoxia offers a synergistic enhancement of aerobic performance in thermoneutral or hot conditions remains unresolved. METHODS: Eight young males ([Formula: see text]: 51.6 ± 4.6 mL min-1 kg-1) underwent a 10-day normobaric hypoxic confinement (FiO2 = 0.14) interspersed with daily 90-min normoxic controlled hyperthermia (target rectal temperature: 38.5 °C) exercise sessions. Prior to, and following the confinement, the participants conducted a 30-min steady-state exercise followed by incremental exercise to exhaustion on a cycle ergometer in thermoneutral normoxic (NOR), thermoneutral hypoxic (FiO2 = 0.14; HYP) and hot (35 °C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. The steady-state exercise was performed at 40% NOR peak power output (Wpeak) to evaluate thermoregulatory function. Blood samples were obtained from an antecubital vein before, on days 1 and 10, and the first day post-acclimation. RESULTS: [Formula: see text] and ventilatory thresholds were not modified in any environment following acclimation. Wpeak increased by 6.3 ± 3.4% in NOR and 4.0 ± 4.9% in HE, respectively. The magnitude and gain of the forehead sweating response were augmented in HE post-acclimation. EPO increased from baseline (17.8 ± 7.0 mIU mL-1) by 10.7 ± 8.8 mIU mL-1 on day 1 but returned to baseline levels by day 10 (15.7 ± 5.9 mIU mL-1). DISCUSSION: A 10-day combined heat and hypoxic acclimation conferred only minor benefits in aerobic performance and thermoregulation in thermoneutral or hot conditions. Thus, adoption of such a protocol does not seem warranted.


Subject(s)
Acclimatization/physiology , Body Temperature Regulation/physiology , Exercise/physiology , Hypoxia/physiopathology , Heart Rate/physiology , Hot Temperature , Humans , Hypoxia/metabolism , Male , Performance-Enhancing Substances/metabolism , Sweating/physiology
6.
Scand J Med Sci Sports ; 29(2): 171-179, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30294815

ABSTRACT

We investigated thermoregulatory and cardiovascular responses at rest in a temperate (20°C) and in a warm (30°C) environment (40% RH) without and with the application of capsaicin on the skin. We hypothesized that regardless of environmental temperature, capsaicin application would stimulate heat loss and concomitantly deactivate heat conservation mechanisms, thus resulting in rectal temperature (Tre) and mean blood pressure decline due to excitation of heat-sensitive TRPV1. Ten male subjects were exposed, while seated, for 30 minutes to 20.8 ± 1.0°C or to 30.6 ± 1.1°C: without (NCA) and with (CA) application of capsaicin patches on the skin. Thermoregulatory (Tre, proximal-distal skin temperature gradient) and cardiovascular variables (modelflow technique) as well as oxygen uptake were continuously measured. The area under the curve for Tre decline at 20°C was smaller in CA (-2.1 ± 1.3 a.u.) than in NCA (-0.6 ± 1.1 a.u., P < 0.01, r = 0.8). Likewise, at 30°C it was smaller in CA (-2.2 ± 2.1 a.u.) compared to NCA (-0.8 ± 2.0 a.u., P = 0.02, r = 0.7). Local vasomotor tone and oxygen uptake, were significantly lower by 36.7% ± 94.2% and 12.3% ± 12.3%, respectively, with capsaicin compared to NCA (P = 0.05 and P < 0.01, respectively). Additionally, in 30°C CA mean arterial pressure was lower by 10.7% ± 5.9%, 8.9% ± 5.9%, and 10.6% ± 7.0% compared to 30°C NCA, 20°C NCA, and 20°C CA, respectively (P < 0.01, P = 0.02, and P < 0.01, respectively, d = 1.4-1.8). In conclusion, capsaicin application on the skin induced vasodilation and Tre decline. At 30°C CA, thermal responses were accompanied by arterial hypotension most likely due to the interactive effects of both stressors (warm environment and capsaicin) on cutaneous vascular regulation.


Subject(s)
Capsaicin/administration & dosage , Skin Temperature/drug effects , Temperature , Vasodilation/drug effects , Administration, Cutaneous , Blood Pressure , Body Temperature , Body Temperature Regulation , Humans , Male , Oxygen Consumption , Rest , Skin/blood supply , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...