Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731843

ABSTRACT

Chronic kidney disease (CKD) is a global health concern affecting approximately one billion individuals worldwide. End-stage kidney disease (ESKD), the most severe form of CKD, is often accompanied by anemia. Peritoneal dialysis (PD), a common treatment for ESKD, utilizes the peritoneum for solute transfer but is associated with complications including protein loss, including transferrin (Tf) a key protein involved in iron transport. This study investigated Tf characteristics in ESKD patients compared to healthy individuals using lectin microarray, spectroscopic techniques and immunocytochemical analysis to assess Tf interaction with transferrin receptors (TfRs). ESKD patients exhibited altered Tf glycosylation patterns, evidenced by significant changes in lectin reactivity compared to healthy controls. However, structural analyses revealed no significant differences in the Tf secondary or tertiary structures between the two groups. A functional analysis demonstrated comparable Tf-TfR interaction in both PD and healthy samples. Despite significant alterations in Tf glycosylation, structural integrity and Tf-TfR interaction remained preserved in PD patients. These findings suggest that while glycosylation changes may influence iron metabolism, they do not impair Tf function. The study highlights the importance of a glucose-free dialysis solutions in managing anemia exacerbation in PD patients with poorly controlled anemia, potentially offering a targeted therapeutic approach to improve patient outcomes.


Subject(s)
Kidney Failure, Chronic , Receptors, Transferrin , Transferrin , Humans , Transferrin/metabolism , Glycosylation , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/metabolism , Male , Female , Middle Aged , Receptors, Transferrin/metabolism , Peritoneal Dialysis , Aged , Adult , Iron/metabolism
2.
Front Biosci (Landmark Ed) ; 29(1): 32, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38287814

ABSTRACT

BACKGROUND: Aberrant glycosylation is a hallmark of cancer and thereby has an excellent potential for the discovery of novel biomarkers. Impairments in the glycan composition of lipoproteins impact their functional properties and can be associated with various diseases, including cancer. This research is still in its infancy; however, it can lead to the development of new diagnostic and disease stratification approaches as well as therapeutic strategies. Therefore, we aimed to evaluate anomalies in O-glycosylation of apolipoprotein C-III (apoC-III) in colorectal carcinoma (CRC) patients' sera, in comparison with sera from healthy individuals, and assess the disparities of O-glycoforms on apoC-III in CRC. METHODS: The choice of patients (n = 42) was based on the same tumor type (adenocarcinoma) and tumor size (T3), without or with inconsiderable lymph node infiltration. Patients with comorbidities were excluded from the study. The control healthy individuals (n = 40) were age- and sex-matched with patients. We used an approach based on the MALDI-TOF MS in linear positive ion mode, allowing simple analysis of O-glycosylation on intact apoC-III molecules in the serum samples directly, without the need for specific protein isolation. This approach enables relatively simple and high-throughput analysis. RESULTS: In CRC patients' sera samples, we observed significantly elevated apoC-III sialylation. Fully sialylated (disialylated) O-glycans had 1.26 times higher relative abundance in CRC samples compared to controls with a p-value of Mann-Whitney U test of 0.0021. CONCLUSIONS: We found altered O-glycosylation of apoC-III in the serum of CRC patients. However, it can be non-specific as it may be associated with another process such as ongoing inflammation. Therefore, to establish it as a potential novel non-invasive biomarker for CRC in suspected patients, further studies interrogating the changes in apoC-III O-glycosylation and the robustness of this biomarker need to be performed and evaluated.


Subject(s)
Colorectal Neoplasms , Polysaccharides , Humans , Apolipoprotein C-III , Glycosylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Biomarkers , Colorectal Neoplasms/diagnosis
3.
Nutrients ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37432214

ABSTRACT

In previous publications, we pointed out the importance of mannosylation of fibrinogen for the development of cardiovascular complications and fucosylation as a predictor of peritoneal membrane dysfunction in patients on peritoneal dialysis (PD). After a follow-up period of 30 months from the onset of the COVID-19 pandemic, we evaluated the significance of 1,25-dihydroxyvitamin D3 (calcitriol) therapy, primary disease, biochemical and hematologic analyzes, and previously performed glycan analysis by lectin-based microarray as predictors of mortality in this patient group. After univariate Cox regression analysis, diabetes mellitus (DM) and calcitriol therapy were found to be potential predictors of mortality. Additional multivariate Cox regression analysis confirmed that only DM was a predictor of mortality. Nevertheless, the use of calcitriol in therapy significantly reduced mortality in this patient group, as shown by the Kaplan-Meier survival curve. The presence of DM as a concomitant disease proved to be a strong predictor of fatal outcome in PD patients infected with SARS-CoV-2. This is the first study to indicate the importance and beneficial effect of calcitriol therapy on survival in PD patients with COVID-19 infection. In addition, this study points to the possibility that adverse thrombogenic events observed in PD patients during the pandemic may be caused by aberrant fibrinogen glycosylation.


Subject(s)
COVID-19 , Hemostatics , Peritoneal Dialysis , Humans , Calcitriol , Pandemics , SARS-CoV-2 , Peritoneal Dialysis/adverse effects , Fibrinogen
4.
Rev Med Virol ; 33(1): e2378, 2023 01.
Article in English | MEDLINE | ID: mdl-35818892

ABSTRACT

Due to their pivotal role in orchestrating the immune response, HLA loci were recognized as candidates for genetic association studies related to the severity of COVID-19. Since the findings on the effects of HLA alleles on the outcome of SARS-CoV-2 infection remain inconclusive, we aimed to elucidate the potential involvement of genetic variability within HLA loci in the molecular genetics of COVID-19 by classifying the articles according to different disease severity/outcomes and by conducting a systematic review with meta-analysis. Potentially eligible studies were identified by searching PubMed, Scopus and Web of Science literature databases. A total of 28 studies with 13,073 participants were included in qualitative synthesis, while the results of 19 studies with 10,551 SARS-CoV-2-positive participants were pooled in the meta-analysis. According to the results of quantitative data synthesis, association with COVID-19 severity or with the lethal outcome was determined for the following alleles and allele families: HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*23, HLA-A*31, HLA-A*68, HLA-A*68:02, HLA-B*07:02, HLA-B*14, HLA-B*15, HLA-B*40:02, HLA-B*51:01, HLA-B*53, HLA-B*54, HLA-B*54:01, HLA-C*04, HLA-C*04:01, HLA-C*06, HLA-C*07:02, HLA-DRB1*11, HLA-DRB1*15, HLA-DQB1*03 and HLA-DQB1*06 (assuming either allelic or dominant genetic model). We conclude that alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci may represent potential biomarkers of COVID-19 severity and/or mortality, which needs to be confirmed in a larger set of studies.


Subject(s)
COVID-19 , HLA-C Antigens , Humans , HLA-C Antigens/genetics , Alleles , HLA-DRB1 Chains/genetics , Haplotypes , COVID-19/diagnosis , COVID-19/genetics , SARS-CoV-2/genetics , HLA-A Antigens/genetics , HLA-B Antigens/genetics
5.
Life (Basel) ; 12(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013453

ABSTRACT

Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.

6.
EXCLI J ; 21: 818-839, 2022.
Article in English | MEDLINE | ID: mdl-35949487

ABSTRACT

Genes involved in the regulation of viral recognition and its entry into a host cell have been identified as candidates for genetic association studies on COVID-19 severity. Published findings on the effects of polymorphisms within ACE1, ACE2, TMPRSS2, IFITM3 and VDR genes remained inconclusive, so we conducted a systematic review and meta-analysis in order to elucidate their potential involvement in the genetic basis underlying the severity of COVID-19 and/or an outcome of SARS-CoV-2 infection. Identification of potentially eligible studies was based on PubMed, Scopus and Web of Science database search. Relevant studies (n=29) with a total number of 8247 SARS-CoV-2-positive participants were included in qualitative synthesis, while results of 21 studies involving 5939 were pooled in meta-analysis. Minor allele I of rs1799752 located within ACE1 was identified as a protective variant against severe COVID-19, while its effect on mortality rate was opposite. Similarly, minor allele A of ACE2 polymorphism, rs2285666, was found to associate with a decreased risk of severe COVID-19 (P = 0.003, OR = 0.512, 95 % CI = 0.331-0.793). Statistical significance was also seen for the association between COVID-19 severity and rs12329760 located within TMPRSS2. Our results did not support the supposed association of rs12252 in IFITM3 and polymorphisms within VDR with disease severity. We conclude that genetic variants within ACE1, ACE2 and TMPRSS2 may be potential biomarkers of COVID-19 severity, which needs to be further confirmed in a larger set of studies.

7.
Free Radic Biol Med ; 187: 105-112, 2022 07.
Article in English | MEDLINE | ID: mdl-35640817

ABSTRACT

Albumin (HSA) is a multifunctional protein and due to its free Cys34 thiol group, represents a main source of free thiols in the circulation. This property of HSA, combined with its ability to sequester redox active Cu(II) ions, makes HSA a dominant circulatory antioxidant. End stage kidney disease (ESRD) is a condition accompanied by elevated oxidative stress. The aim of the present study was to examine changes in the antioxidative capacity of HSA and Cu(II) binding affinity in patients on peritoneal dialysis (PD), and relate it to the Cys34 thiol group content and other structural changes of this molecule. HSA molecules are modified in ESRD patients subjected to PD, having significantly lower thiol group and bound Cu(II) content, reduced antioxidant capacity, an increased content of advanced glycation end-products and altered conformation. Also, Cu(II) binding capacity of HSA in these patients is impaired, since a significant portion of the high-affinity metal-binding site is unable to interact with Cu(II). Taking into account that the concentration of Cu(II) in the circulation of ESRD patients is much higher than in healthy persons and that Cu(II) binding capacity of HSA in these patients is significantly impaired, HSA may be considered as a novel circulatory pro-oxidant, thus exacerbating oxidative stress.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Antioxidants/metabolism , Humans , Kidney Failure, Chronic/therapy , Reactive Oxygen Species , Serum Albumin/metabolism , Sulfhydryl Compounds/metabolism
8.
J Biol Inorg Chem ; 27(2): 261-269, 2022 03.
Article in English | MEDLINE | ID: mdl-35150336

ABSTRACT

Metal ions seem to play important roles in the pathogenesis of the novel coronavirus disease of 2019 (Covid-19) and are under investigation as potential prognostic markers and supplements in therapeutic procedures. The present study was aimed at assessing the relationship between the most abundant essential microelements (iron, zinc and copper) and their major binding proteins in the circulation in the early stage of infection. The concentration of zinc ions was measured to be higher in infected than in healthy persons, as well as ratios zinc/albumin and zinc/alpha-2-macroglobulin. Increased zinc levels could be attributed to cellular redistribution of zinc ions or to a use of zinc supplementation (zinc concentration was above the upper reference limit in one-third of infected individuals). Immunoblot analysis of protein molecular forms revealed that infected persons had greater amounts of proteinase-bound alpha-2-macroglobulin tetramer and albumin monomer than healthy individuals. The quantities of these forms were correlated with the concentration of zinc ions (r = 0.42 and 0.55, respectively) in healthy persons, but correlations were lost in infected individuals, most likely due to very high zinc concentrations in some participants which were not proportionally followed by changes in the distribution of protein species. Although we still have to wait for a firm confirmation of the involvement of zinc in beneficial defense mechanisms in patients with Covid-19, it seems that this ion may contribute to the existence of circulating protein forms which are the most optimal.


Subject(s)
COVID-19 , Carrier Proteins/genetics , Trace Elements , Copper , Humans , Iron , SARS-CoV-2 , Zinc
9.
Methods Mol Biol ; 2460: 207-222, 2022.
Article in English | MEDLINE | ID: mdl-34972939

ABSTRACT

Lectin-based protein microarrays are used for glycoprofiling of various kinds of biological samples. Here we describe lectin-based microarray assay in the reverse-phase format where glycoprotein samples are spotted onto microarray slide and then are incubated with set of lectins. This configuration allows high-throughput screening of a large cohort of samples by a set of lectins without need of separation of glycans from glycoproteins. We applied the described method for glycan analysis of glycoprotein biomarkers of colorectal cancer associated with the insulin-like growth factor system.


Subject(s)
Colorectal Neoplasms , Somatomedins , Biomarkers/metabolism , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Glycosylation , Humans , Lectins/metabolism , Microarray Analysis/methods , Polysaccharides/analysis , Protein Array Analysis/methods , Somatomedins/metabolism
10.
Biomolecules ; 10(8)2020 08 09.
Article in English | MEDLINE | ID: mdl-32784866

ABSTRACT

Glycosylation may strongly affect protein structure and functions. A high risk of cardiovascular complications seen in patients with end-stage renal disease (ESRD) is, at least partly associated with delayed clot formation, increased clot strength, and delayed cloth lysis. Taking into consideration that fibrinogen mediates these processes, we isolated fibrinogen from the plasma from patients with ESRD on peritoneal dialysis (ESRD-PD), and examined glycosylation of native fibrinogen and its subunits by lectin-based microarray and lectin blotting. Compared to healthy controls, fibrinogen from patients had increased levels of A2BG2 and decreased levels of FA2 glycan. The distribution of glycans on individual chains was also affected, with the γ chain, responsible for physiological functions of fibrinogen (such as coagulation and platelet aggregation), being most prone to these alterations. Increased levels of multi-antennary N-glycans in ESRD-PD patients were also associated with the type of dialysis solutions, whereas an increase in the fucosylation levels was strongly related to the peritoneal membrane damage. Consequently, investigation of fibrinogen glycans can offer better insight into fibrinogen-related complications observed in ESRD-PD patients and, additionally, contribute to prognosis, choice of personalised therapy, determination of peritoneal membrane damage, and the length of utilization of peritoneum for dialysis.


Subject(s)
Fibrinogen/chemistry , Fibrinogen/metabolism , Fucose/metabolism , Kidney Failure, Chronic/blood , Peritoneal Dialysis , Aged , Aged, 80 and over , Biomarkers/blood , Female , Glycosylation , Humans , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/pathology , Lectins/blood , Lectins/chemistry , Male , Middle Aged , Polysaccharides/blood , Polysaccharides/chemistry , Polysaccharides/metabolism , Prognosis , Protein Array Analysis
11.
Eur J Pharm Sci ; 147: 105280, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32109493

ABSTRACT

The release and absorption profile of an oral medication is influenced by the physicochemical properties of the drug and its formulation, as well as by the anatomy and physiology of the gastrointestinal (GI) tract. During drug development the bioavailability of a new drug is typically assessed in early clinical studies in a healthy adult population. However, many disease conditions are associated with an alteration of the anatomy and/or physiology of the GI tract. The same holds true for some subpopulations, such as paediatric or elderly patients, or populations with different ethnicity. The variation in GI tract conditions compared to healthy adults can directly affect the kinetics of drug absorption, and thus, safety and efficacy of an oral medication. This review provides an overview of GI tract properties in special populations compared to healthy adults and discusses how drug absorption is affected by these conditions. Particular focus is directed towards non-disease dependent conditions (age, sex, ethnicity, genetic factors, obesity, pregnancy), GI diseases (ulcerative colitis and Crohn's disease, celiac disease, cancer in the GI tract, Roux-en-Y gastric bypass, lactose intolerance, Helicobacter pylori infection, and infectious diseases of the GI tract), as well as systemic diseases that change the GI tract conditions (cystic fibrosis, diabetes, Parkinson's disease, HIV enteropathy, and critical illness). The current knowledge about GI conditions in special populations and their impact on drug absorption is still limited. Further research is required to improve confidence in pharmacokinetic predictions and dosing recommendations in the targeted patient population, and thus to ensure safe and effective drug therapies.


Subject(s)
Gastrointestinal Absorption/physiology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/physiology , Administration, Oral , Adult , Aged , Child , Drug Liberation , Gastrointestinal Diseases , Humans
12.
Int J Biol Macromol ; 144: 932-937, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31669471

ABSTRACT

Glycosylation of cell receptors influences their function and development of tumour induces changes in glycosylation. Cell growth depends on the activation of receptors which bind growth factors and the insulin-like growth factor (IGF) receptors are among the most important ones. Usually, only small quantities of isolated receptors are available thus there is a need of suitable assay to study receptors glycosylation. Therefore, we developed a lectin-based reverse-phase protein microarray method for screening the glycosylation pattern of receptors in picomolar (pM) concentrations. The method was applied to glycoprofile IGF1 and IGF2 receptors and the solubilised membrane proteins isolated from tumour and non-tumour colon tissue of patients with colorectal cancer. We found that common to both receptors was partial overlapping of the major glycan structures with those present in the entire glycome of membrane proteins. In contrast, receptors possess higher level of α2,3 sialic acid residues and lower level of tri-/tetra-antennary complex type N-glycans and terminal mannose in high-mannose structures. Increased levels of fucosylation and branched mannose structures were observed in both receptors derived from tumour tissue compared to non-tumour tissue. The described method enabling glycan analysis of receptors has a big application potential in e.g. biomarker research, biology and diagnostics.


Subject(s)
Colon/pathology , Colorectal Neoplasms/metabolism , Lectins/metabolism , Protein Array Analysis , Receptors, Somatomedin/metabolism , Aged , Aged, 80 and over , Colorectal Neoplasms/pathology , Female , Humans , Limit of Detection , Male , Middle Aged , Polysaccharides/metabolism
13.
Curr Pharm Des ; 25(15): 1747-1759, 2019.
Article in English | MEDLINE | ID: mdl-31298156

ABSTRACT

BACKGROUND: Fish is consumed as food worldwide and is considered as a rich source of essential nutrients required for a healthy life. Supplementation with fish oil has been adopted as a solution to prevent or cure many pathophysiological states and diseases by both the professionals and the civil population. The beneficial effects are, however, being questioned, as some controversial results were obtained in clinical and population studies. METHODS: Critical evaluation of studies regarding known effects of fish oil, both in favour of its consumption and related controversies. RESULTS: From the literature review, contradictory allegations about the positive action of the fish oil on human health emerged, so that a clear line about its beneficial effect cannot be withdrawn. CONCLUSION: Scientific results on the application of fish oil should be taken with caution as there is still no standardised approach in testing its effects and there are significantly different baselines in respect to nutritional and other lifestyle habits of different populations.


Subject(s)
Dietary Supplements , Fish Oils/pharmacology , Animals , Humans
14.
Proteomics Clin Appl ; 13(5): e1800185, 2019 09.
Article in English | MEDLINE | ID: mdl-31050875

ABSTRACT

PURPOSE: Disease or a specific condition may cause alteration of human transferrin (hTf) glycosylation pattern. A specific analytical platform, lectin-based protein microarray, is designed and optimized for the investigation of hTf glycans, attached to the protein core in their native form. EXPERIMENTAL DESIGN: hTf molecules isolated from healthy persons of different age, diabetes mellitus type 2 (T2DM) or colorectal carcinoma (CRC) patients are used for method validation. Reliability of the results is ensured by three criteria for the evaluation of hTf-lectin interactions: i) signal-to-noise ratio above 3, ii) signal intensity above 250 arbitrary units, and iii) hTf concentration ensuring high sensitivity of the assay. RESULTS: Six lectins, out of fourteen tested, satisfy the criteria. hTf is spotted at concentration of 50 µg mL-L . When physiological samples (isolated hTf) are analyzed, the highest potential to differentiate between population groups expresses Aleuria aurantia (AAL), Triticum vulgaris (WGA) and Phaseolus vulgaris (PHA-E) lectins. The initial amount of hTf which can be analyzed is very low (75 pg). CONCLUSION AND CLINICAL RELEVANCE: Results confirm that a very sensitive, high-throughput lectin-based protein microarray platform can be formulated to detect changes in hTf glycan structures which can be considered as biomarkers of ageing or a disease.


Subject(s)
Glycoproteins/metabolism , Lectins/metabolism , Protein Array Analysis , Transferrin/metabolism , Adult , Aged , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Female , Glycosylation , Humans , Male , Middle Aged
15.
Clin Chim Acta ; 471: 12-16, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28502560

ABSTRACT

A microscale procedure for the isolation of transferrin directly from human serum (hTf) is described in this study. The protocol is based on three precipitation steps without application of chromatography. It lasts 90min with the initial sample volume of 250µL. The yield of the isolated hTf is 58%, which is considerable in biochemical terms. The purity of the isolated hTf is 97%, as assessed by three methods: electrophoresis followed by protein staining, immunoblotting and HPLC. Immunoblotting with antibodies against other major serum proteins indicated that isolated hTf does not contain albumin, immunoglobulin G or alpha-2-macroglobulin. Lectin dot-blot demonstrated that isolated hTf preserved its glycan moieties. Fluorescent emission spectroscopy of the isolated hTf has shown no changes in tertiary structure. Isolated hTf was approximately 26% saturated with iron ion, which is comparable to physiological value (although a degree of saturation decreases to some extent during isolation procedure). Finally, co-immunoprecipitation experiment confirmed that isolated hTf retained its ligand characteristics crucial for the ligand-receptor type of interaction with the hTf receptor. To conclude, the procedure described in this work, is time and cost-effective, allows multiple sample handling and provides high-purity hTf isolate with preserved structural and functional properties.


Subject(s)
Immunoprecipitation/methods , Serum/chemistry , Transferrin/isolation & purification , Chromatography, High Pressure Liquid , Glycosylation , Humans , Receptors, Transferrin/metabolism , Transferrin/analysis , Transferrin/metabolism
16.
J Sport Health Sci ; 6(3): 372-377, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30356600

ABSTRACT

BACKGROUND: Intensive exercise changes physiological need for glucose and several biochemical pathways responsible for its metabolism response. Among them are those which involve insulin, insulin-like growth factor (IGF-1), and IGF-binding proteins (IGFBPs). Different types and degrees of exercise, as well as an athlete's fitness, may induce a range of responses regarding concentrations and time needed for the alteration. The idea of the work was to find out whether and how insulin/IGF axis responds to additional physical activity in the already trained subjects and if so, is the adaptation potentially beneficial from the aspect of metabolic control. METHODS: The effect of 4-week intensive training on campus (preparatory training) on the levels of insulin, IGF-1, and IGFBPs during maximal progressive exercise test (MPET) on a treadmill was compared to the results obtained during MPET conducted after a regular training season of a female elite handball team (n = 17, age: 17 ± 1 years, height: 171 ± 8 cm, weight: 65 ± 8 kg, body mass index: 22 ± 1 kg/m2 at the beginning of the study; there were no significant changes at the end). Serum samples were obtained from players immediately before the test (basal), at the end of the test after reaching the point of maximal oxygen consumption (VO2max), and after recovery. RESULTS: The concentration of insulin decreased at VO2max, but remained higher in players after preparatory training (12.2 ± 2.5 mU/L vs. 8.9 ± 4.4 mU/L, p = 0.049). The level of IGFBP-1 decreased in players at VO2max in either case of training, but it remained much higher in tests performed after the preparatory regime than before (p = 0.029). Concentrations of IGF-1, IGFBP-2, -3, and -4 did not change significantly. CONCLUSION: The inverse relation between insulin and IGFBP-1 was lost during MPET, as these 2 molecules changed in the same direction. The results obtained suggest less severe stress-induced depression of insulin and IGFBP-1 after preparatory training. But another metabolic mechanism cannot be excluded, and that is potentially impaired insulin sensitivity resulting in higher level of IGFBP-1.

17.
Biotechnol Appl Biochem ; 63(4): 457-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26075587

ABSTRACT

Glycosylation is co- and posttranslational modifications affecting proteins. The glycopattern changes are associated with changes in biological function and are involved in many diseases including cancer. We present the lectin-based protein microarray method enabling determination of differences in protein glycosylation. The method involves isolation of targeted protein from samples by immunoprecipitation, spotting of protein from multiple samples into arrays on a microarray slide, incubation with set of biotinylated lectins, the reaction with fluorescent conjugate of streptavidin, and detection of fluorescent intensities by microarray scanner. Lectin-based protein microarray was applied in investigation of differences in alpha-2-macroglobulin (α2M) glycosylation isolated from sera samples of healthy persons and patients with colorectal cancer (CC). From 14 lectins used in analysis, statistically significant differences (Student's t-test, P < 0.05) between two groups of samples (persons without cancer and CC patients) were found for 5 of them. α2M molecules isolated from sera of CC patients have higher content of α2,6 sialic acid, N-acetylglucosamine and mannose residues, and tri-/tetraantennary complex type high-mannose N-glycans. A novel lectin-based protein microarray developed and described can serve as a suitable analytical technique for sensitive, simple, fast, and high-throughput determination of differences in protein glycosylation isolated from serum or other samples.


Subject(s)
Colorectal Neoplasms/blood , Colorectal Neoplasms/metabolism , Lectins/metabolism , Protein Array Analysis/methods , alpha-Macroglobulins/metabolism , Aged , Case-Control Studies , Female , Glycosylation , Humans , Male , Middle Aged
18.
J Med Biochem ; 35(1): 17-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-28356860

ABSTRACT

BACKGROUND: Insulin and insulin-like growth factor (IGF) activities are disturbed during critical illness. Time-course changes in the concentrations of insulin, IGF-I and IGF-binding proteins (IGFBPs) were monitored in this study and their correlation with interleukin (IL)-6 was assessed in patients subjected to total gastrectomy and specific nutritional regime. METHODS: Patients were fed post-operatively according to the following scheme: parenteral nutrition on day 1, enteral nutrition combined with parenteral form from day 2 to 7, peroral nutrition from day 8 and full oral nutrition from day 14. Blood samples were taken periodically and the levels of IL-6, insulin, IGF-I and IGFBP-1 to -4 were determined. RESULTS: On day 1 post-operatively, the concentration of IL-6 reached its maximum and decreased afterwards. The concentration of insulin increased until day 3 and then started to fall. The concentration of IGF-I, already low preoperatively, continued to decrease. The concentration of IGFBP-1 peaked on day 1 post-operatively, whereas the concentration of IGFBP-3 decreased on that day. The concentration of IL-6 correlated positively with the concentration of IGFBP-1 and negatively with IGFBP-3. On day 14, the concentrations of IL-6, insulin and IGFBP-1 returned to or were close to their basal levels, whereas the concentrations of IGF-I and IGFBP-3 remained reduced. CONCLUSIONS: A 14-day post-operative recovery, which included specific nutritional support, was suitable to restore insulin concentration and re-establish IGFBP-1 regulation primarily by nutrition. Very low IGF-I level on day 14 after surgery and IGFBP-3 concentration still lower than before surgery indicated that the catabolic condition was not compensated.

19.
Exp Mol Pathol ; 98(3): 431-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25839091

ABSTRACT

PURPOSE: The aim of this work was to study the involvement of IGFBP-3/Tf complexes in the pathology of colorectal carcinoma (CRC), quantify them, investigate their relation to iron concentration and binding to transferrin receptor (TfR) in colon tissue (non-cancer and cancer), and to assess the priority of this pathway for internalization of IGFBP-3. METHODS: The presence of IGFBP-3/Tf complexes was analyzed in sera from healthy persons and patients with CRC, and in colon tissue by immunoblotting. Complexes were immunoprecipitated, quantified by immunoassay and structurally characterized by immunoblotting, lectin blotting and mass spectrometry. Complexes which interacted with colon cells were immunoprecipitated with anti-TfR1 antibody and studied. Colon tissue slides were subjected to immunohistochemical analysis. RESULTS: The concentration of IGFBP-3/Tf complexes was three times lower in patients with CRC. They were increasingly carbonylated, sialylated, contained more Galß4GlcNAc units, expressed altered charge density and increased affinity for metal ions. Immunoprecipitation experiments revealed more TfR1 on membranes than in cytosol of colon cells, also more in cancer than non-cancer tissue. TfR1 on membranes were less occupied with IGFBP-3/Tf complexes than in cytosol. Immunofluorescent staining indicated a remarkable degree of co-localization of IGFBP-3 and TfR1, evenly distributed in non-cancer tissue and both evenly and cell surface concentrated in cancer tissue. CONCLUSIONS: Increased expression of TfR1 on colon cell membranes in patients with CRC compensates for the reduced extracellular availability of IGFBP-3/Tf and TfR1 is the principal binding partner of extracellular IGFBP-3. IGFBP-3/Tf complexes in patients with CRC exhibit increased affinity for iron ions.


Subject(s)
Antigens, CD/metabolism , Carcinoma/metabolism , Colonic Neoplasms/metabolism , Insulin-Like Growth Factor Binding Protein 1/metabolism , Receptors, Transferrin/metabolism , Transferrin/metabolism , Adult , Aged , Carcinoma/diagnosis , Case-Control Studies , Cell Membrane/metabolism , Colonic Neoplasms/diagnosis , Cytosol/metabolism , Female , Humans , Iron/metabolism , Male , Middle Aged , Protein Binding , Protein Transport
20.
Free Radic Biol Med ; 65: 1195-1200, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051179

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide and also the one with the highest mortality rate. Tumor growth is assisted by various growth factors, and insulin-like growth factors (IGFs) are among the most important. A majority of the IGFs are bound to IGF-binding proteins (IGFBPs) and their release is dependent on the rate of IGFBP proteolysis. The action of free IGFs is exerted and controlled by binding to cell membrane receptors (IGF-Rs). The objective of this work was to connect two determinants of the CRC pathology: oxidation as a process that underlies tumor development and the members of the IGF system that control it. Carbonyl groups (CO) on IGFBP-2, IGFBP-3, IGF-1R, and IGF-2R were determined in samples obtained from patients with CRC, and IGF-binding properties of these proteins were analyzed. According to our results, IGFBP-2 and IGFBP-3 in serum had increased content of CO groups due to CRC. Oxidation of IGFBP-2 increased its affinity for IGF molecules, whereas oxidation of IGFBP-3 reduced it. As for receptors, only intact CO-IGF-2R was detected on solubilized colon membranes, whereas CO-IGF-1R was degraded into fragments. Oxidative changes in the IGF axis may be regarded as part of the mechanism of its action. IGFs bound to IGFBP-3 remain in the circulation, whereas those bound to IGFBP-2 freely reach target tissues. Therefore, oxidation supports IGF distribution toward tissues and, consequently, promotes tumor growth.


Subject(s)
Colorectal Neoplasms/pathology , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Somatomedins/metabolism , Humans , Insulin-Like Growth Factor Binding Protein 2/blood , Insulin-Like Growth Factor Binding Protein 3/blood , Oxidation-Reduction , Protein Binding , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...