Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(5): 3402-3408, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29397699

ABSTRACT

Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.

2.
Anal Chem ; 90(3): 2088-2094, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29260554

ABSTRACT

A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.

3.
J Am Chem Soc ; 131(32): 11272-3, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19722638

ABSTRACT

The electrochemical response of an electrode-immobilized layer of undoped, insulating diamond nanoparticles is reported, which we attribute to the oxidation and reduction of surface states. The potentials of these surface states are pH-dependent; moreover they are able to interact with solution redox species. The voltammetric response of redox couples Fe(CN)(6)(3-/4-) and IrCl(6)(3-/2-) are compared at bare boron-doped diamond electrodes and electrodes modified with a layer of nanodiamond (ND). In all cases the presence of ND modifies the CV response at slow scan rates if low concentrations of redox couple are used. Enhancements of oxidation currents are noted at potentials at which the ND surface states can also undergo oxidation, and enhancements of reduction currents are likewise observed where ND is also reducible. We attribute these observations to electron transfer occurring between the species generated at the underlying electrode during CV and the ND immobilized in the interfacial region, leading to regeneration of the starting species and hence enhancement in currents due to a feedback mechanism. The magnitude of current enhancement thus depends on the standard potential of the redox couple relative to those of the ND surface states.

4.
Phys Chem Chem Phys ; 10(2): 303-10, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18213416

ABSTRACT

This paper demonstrates the promoting effects of 5 nm undoped detonation diamond nanoparticles on redox reactions in solution. An enhancement in faradaic current for the redox couples Ru(NH(3))(6)(3+/2+) and Fe(CN)(6)(4-/3-) was observed for a gold electrode modified with a drop-coated layer of nanodiamond (ND), in comparison to the bare gold electrode. The ND layer was also found to promote oxygen reduction. Surface modification of the ND powders by heating in air or in a hydrogen flow resulted in oxygenated and hydrogenated forms of the ND, respectively. Oxygenated ND was found to exhibit the greatest electrochemical activity and hydrogenated ND the least. Differential pulse voltammetry of electrode-immobilised ND layers in the absence of solution redox species revealed oxidation and reduction peaks that could be attributed to direct electron transfer (ET) reactions of the ND particles themselves. It is hypothesised that ND consists of an insulating sp(3) diamond core with a surface that has significant delocalised pi character due to unsatisfied surface atoms and C[double bond, length as m-dash]O bond formation. At the nanoscale surface properties of the particles dominate over those of the bulk, allowing ET to occur between these essentially insulating particles and a redox species in solution or an underlying electrode. We speculate that reversible reduction of the ND may occur via electron injection into available surface states at well-defined reduction potentials and allow the ND particles to act as a source and sink of electrons for the promotion of solution redox reactions.


Subject(s)
Diamond/chemistry , Ferrocyanides/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Ruthenium Compounds/chemistry , Electrochemistry , Electrodes , Electron Transport , Gold/chemistry , Microscopy, Electron, Transmission , Oxidation-Reduction , Oxygen/chemistry , Particle Size , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...